1
|
Liu Y, Zhao L, Chen H, Ye Z, Guo L, Zhou Z. Nobiletin enhances the antifungal activity of eugenol nanoemulsion against Penicillium italicum in both in vitro and in vivo settings. Int J Food Microbiol 2024; 420:110769. [PMID: 38823189 DOI: 10.1016/j.ijfoodmicro.2024.110769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/19/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
The study prepared and used eugenol nanoemulsion loaded with nobiletin as fungistat to study its antifungal activity and potential mechanism of Penicillium italicum (P. italicum). The results showed that the minimum inhibitory concentration (MIC) of eugenol nanoemulsion loaded with nobiletin (EGN) was lower than that of pure eugenol nanoemulsion (EG), which were 160 μg/mL and 320 μg/mL, respectively. At the same time, the mycelial growth inhibition rate of EGN nanoemulsion (54.68 %) was also higher than that of EG nanoemulsion (9.92 %). This indicates that EGN nanoemulsion is more effective than EG nanoemulsion. Compared with EG nanoemulsion, the treatment of EGN nanoemulsion caused more serious damage to the cell structure of P. italicum. At the same time, in vitro inoculation experiments found that EGN nanoemulsion has better control and delay the growth and reproduction of P. italicum in citrus fruits. And the results reflected that EGN nanoemulsion may be considered as potential resouces of natural antiseptic to inhibit blue mold disease of citrus fruits, because it has good antifungal activity.
Collapse
Affiliation(s)
- Yanchi Liu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Lintao Zhao
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Hongyang Chen
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Zimao Ye
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Long Guo
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Zhiqin Zhou
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; The Southwest Institute of Fruits Nutrition, Banan District, Chongqing 400054, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China.
| |
Collapse
|
2
|
Alghamdi S, Abbas F, Hussein R, Alhamzani A, El‐Shamy N. Spectroscopic characterization (IR, UV-Vis), and HOMO-LUMO, MEP, NLO, NBO Analysis and the Antifungal Activity for 4-Bromo-N-(2-nitrophenyl) benzamide; Using DFT Modeling and In silico Molecular Docking. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
3
|
Li X, Yang S, Zhang M, Yang Y, Peng L. Identification of Pathogenicity-Related Effector Proteins and the Role of Piwsc1 in the Virulence of Penicillium italicum on Citrus Fruits. J Fungi (Basel) 2022; 8:jof8060646. [PMID: 35736129 PMCID: PMC9224591 DOI: 10.3390/jof8060646] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 02/01/2023] Open
Abstract
Blue mold caused by Penicillium italicum is one of the two major postharvest diseases of citrus fruits. The interactions of pathogens with their hosts are complicated, and virulence factors that mediate pathogenicity have not yet been identified. In present study, a prediction pipeline approach based on bioinformatics and transcriptomic data is designed to determine the effector proteins of P. italicum. Three hundred and seventy-five secreted proteins of P. italicum were identified, many of which (29.07%) were enzymes for carbohydrate utilization. Twenty-nine candidates were further analyzed and the expression patterns of 12 randomly selected candidate effector genes were monitored during the early stages of growth on PDA and infection of Navel oranges for validation. Functional analysis of a cell wall integrity-related gene Piwsc1, a core candidate, was performed by gene knockout. The deletion of Piwsc1 resulted in reduced virulence on citrus fruits, as presented by an approximate 57% reduction in the diameter of lesions. In addition, the mycelial growth rate, spore germination rate, and sporulation of ΔPiwsc1 decreased. The findings provide us with new insights to understand the pathogenesis of P. italicum and develop an effective and sustainable control method for blue mold.
Collapse
|
4
|
Xu X, Xu B, Wang X, Li J. Quantitative structure-activity relationships study of a series of niacinamide analogues as androgen receptor antagonists. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
5
|
Chen C, Qi W, Peng X, Chen J, Wan C. Inhibitory Effect of 7-Demethoxytylophorine on Penicillium italicum and its Possible Mechanism. Microorganisms 2019; 7:E36. [PMID: 30691129 PMCID: PMC6406921 DOI: 10.3390/microorganisms7020036] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 02/07/2023] Open
Abstract
7-demethoxytylophorine (DEM) is a phenanthroindolizidine alkaloid, which is reported to be effective in inhibiting leucocytes and regulation of human immunity. However, few studies reported the inhibitory effect of DEM against plant-pathogenic fungi, particularly postharvest pathogen Penicillium italicum (P. italicum). Current studies have investigated the antifungal activity of DEM through membrane damage and energy deficit in P. italicum. The results showed that the DEM potentially inhibits the growth of P. italicum in a dose-dependent manner. In vitro (mycelial growth and spore germination) tests showed great minimal inhibitory concentration (MIC) (1.56 µg mL-1) and minimum fugicide concentration (MFC) (6.25 µg mL-1). Microscopic analyses showed that mycelial morphology of P. italicum was severely damaged following DEM treatment. Moreover, relative electrical conductivity and lysis ability assays showed that DEM treatment aids in destroying the integrity of plasma membranes that deplete reducing sugars and soluble proteins. The activity of malate dehydrogenase (MDH) and succinate dehydrogenase (SDH) demonstrated that DEM led to the disruption of TCA cycle in P. italicum mycelia. The results of this study led us to conclude that, DEM could be used as a natural antifungal agent for controlling postharvest blue mold disease of citrus fruits caused by P. italicum.
Collapse
Affiliation(s)
- Chuying Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Wenwen Qi
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Xuan Peng
- Pingxiang University, Pingxiang 337055, China.
| | - Jinyin Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang 330045, China.
- Pingxiang University, Pingxiang 337055, China.
| | - Chunpeng Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
6
|
Chen J, Shen Y, Chen C, Wan C. Inhibition of Key Citrus Postharvest Fungal Strains by Plant Extracts In Vitro and In Vivo: A Review. PLANTS (BASEL, SWITZERLAND) 2019; 8:plants8020026. [PMID: 30678206 PMCID: PMC6409944 DOI: 10.3390/plants8020026] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 02/07/2023]
Abstract
Citrus fruits are subjected to a diversity of postharvest diseases caused by various pathogens during picking, packing, storage and transportation. Green and blue molds, caused by Penicillium digitatum and Penicillium italicum, respectively, are two major postharvest citrus diseases and cause significant economic losses during the commercialization phase. Currently, the control of postharvest citrus diseases relies mainly on the use of synthetic fungicides, which usually result in the resistance against fungal attack, environment pollution and health hazards. In recent years, much attention has been given to the preservation of citrus by naturally isolated edible plant extracts, medicinal plant extracts, Citrus extracts and volatiles, et al. Scientists worldwide devote their time and energy to discover the high effect, low toxicity, safety and inexpensive plant-derived fungicides. The current review will highlight plant-derived fungicides and chemical constituents that aim to inhibit P. digitatum and P. italicum in vitro and in vivo. Coatings enriched with plant extracts could be good alternative methods for Citrus fruits preservation. Problems and prospects of the research and development of plant-derived natural fungicides will also be discussed in this article.
Collapse
Affiliation(s)
- Jinyin Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang 330045, China.
- Pingxiang University, Pingxiang 337055, China.
| | - Yuting Shen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Chuying Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Chunpeng Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
7
|
Structure-Based Discovery and Synthesis of Potential Transketolase Inhibitors. Molecules 2018; 23:molecules23092116. [PMID: 30142874 PMCID: PMC6225308 DOI: 10.3390/molecules23092116] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 08/17/2018] [Accepted: 08/21/2018] [Indexed: 01/09/2023] Open
Abstract
Transketolase (TKL) plays a key role in plant photosynthesis and has been predicted to be a potent herbicide target. Homology modeling and molecular dynamics simulation were used to construct a target protein model. A target-based virtual screening was developed to discover novel potential transketolase inhibitors. Based on the receptor transketolase 1 and a target-based virtual screening combined with structural similarity, six new compounds were selected from the ZINC database. Among the structural leads, a new compound ZINC12007063 was identified as a novel inhibitor of weeds. Two novel series of carboxylic amide derivatives were synthesized, and their structures were rationally identified by NMR and HRMS. Biological evaluation of the herbicidal and antifungal activities indicated that the compounds 4u and 8h were the most potent herbicidal agents, and they also showed potent fungicidal activity with a relatively broad-spectrum. ZINC12007063 was identified as a lead compound of potential transketolase inhibitors, 4u and 8h which has the herbicidal and antifungal activities were synthesized based on ZINC12007063. This study lays a foundation for the discovery of new pesticides.
Collapse
|