1
|
Maslin M, Paix B, van der Windt N, Ambo-Rappe R, Debitus C, Gaertner-Mazouni N, Ho R, de Voogd NJ. Prokaryotic communities of the French Polynesian sponge Dactylospongia metachromia display a site-specific and stable diversity during an aquaculture trial. Antonie Van Leeuwenhoek 2024; 117:65. [PMID: 38602593 PMCID: PMC11008079 DOI: 10.1007/s10482-024-01962-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024]
Abstract
Dynamics of microbiomes through time are fundamental regarding survival and resilience of their hosts when facing environmental alterations. As for marine species with commercial applications, such as marine sponges, assessing the temporal change of prokaryotic communities allows us to better consider the adaptation of sponges to aquaculture designs. The present study aims to investigate the factors shaping the microbiome of the sponge Dactylospongia metachromia, in a context of aquaculture development in French Polynesia, Rangiroa, Tuamotu archipelago. A temporal approach targeting explants collected during farming trials revealed a relative high stability of the prokaryotic diversity, meanwhile a complementary biogeographical study confirmed a spatial specificity amongst samples at different longitudinal scales. Results from this additional spatial analysis confirmed that differences in prokaryotic communities might first be explained by environmental changes (mainly temperature and salinity), while no significant effect of the host phylogeny was observed. The core community of D. metachromia is thus characterized by a high spatiotemporal constancy, which is a good prospect for the sustainable exploitation of this species towards drug development. Indeed, a microbiome stability across locations and throughout the farming process, as evidenced by our results, should go against a negative influence of sponge translocation during in situ aquaculture.
Collapse
Affiliation(s)
- Mathilde Maslin
- Univ Polynesie Française, Ifremer, ILM, IRD, EIO UMR 241, Tahiti, French Polynesia
| | - Benoît Paix
- Naturalis Biodiversity Center, PO Box 9517, 2300 RA, Leiden, the Netherlands.
| | - Niels van der Windt
- Naturalis Biodiversity Center, PO Box 9517, 2300 RA, Leiden, the Netherlands
- Institute of Environmental Sciences (CML), Leiden University, PO Box 9518, 2300 RA, Leiden, the Netherlands
| | - Rohani Ambo-Rappe
- Faculty of Marine Science and Fisheries, Department of Marine Science, Hasanuddin University, Makassar, Indonesia
| | - Cécile Debitus
- IRD, Univ Brest, CNRS, Ifremer, LEMAR, 29280, Plouzané, France
| | | | - Raimana Ho
- Univ Polynesie Française, Ifremer, ILM, IRD, EIO UMR 241, Tahiti, French Polynesia
| | - Nicole J de Voogd
- Naturalis Biodiversity Center, PO Box 9517, 2300 RA, Leiden, the Netherlands.
- Institute of Biology (IBL), Leiden University, 2333 BE, PO Box 9505, Leiden, the Netherlands.
| |
Collapse
|
2
|
Varamogianni-Mamatsi D, Nunes MJ, Marques V, Anastasiou TI, Kagiampaki E, Vernadou E, Dailianis T, Kalogerakis N, Branco LC, Rodrigues CMP, Sobral RG, Gaudêncio SP, Mandalakis M. Comparative Chemical Profiling and Antimicrobial/Anticancer Evaluation of Extracts from Farmed versus Wild Agelas oroides and Sarcotragus foetidus Sponges. Mar Drugs 2023; 21:612. [PMID: 38132933 PMCID: PMC10744379 DOI: 10.3390/md21120612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/08/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Marine sponges are highly efficient in removing organic pollutants and their cultivation, adjacent to fish farms, is increasingly considered as a strategy for improving seawater quality. Moreover, these invertebrates produce a plethora of bioactive metabolites, which could translate into an extra profit for the aquaculture sector. Here, we investigated the chemical profile and bioactivity of two Mediterranean species (i.e., Agelas oroides and Sarcotragus foetidus) and we assessed whether cultivated sponges differed substantially from their wild counterparts. Metabolomic analysis of crude sponge extracts revealed species-specific chemical patterns, with A. oroides and S. foetidus dominated by alkaloids and lipids, respectively. More importantly, farmed and wild explants of each species demonstrated similar chemical fingerprints, with the majority of the metabolites showing modest differences on a sponge mass-normalized basis. Furthermore, farmed sponge extracts presented similar or slightly lower antibacterial activity against methicillin-resistant Staphylococcus aureus, compared to the extracts resulting from wild sponges. Anticancer assays against human colorectal carcinoma cells (HCT-116) revealed marginally active extracts from both wild and farmed S. foetidus populations. Our study highlights that, besides mitigating organic pollution in fish aquaculture, sponge farming can serve as a valuable resource of biomolecules, with promising potential in pharmaceutical and biomedical applications.
Collapse
Affiliation(s)
- Despoina Varamogianni-Mamatsi
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, 71500 Heraklion Crete, Greece; (D.V.-M.); (T.I.A.); (E.K.); (E.V.); (T.D.)
- School of Chemical and Environmental Engineering, Technical University of Crete, 73100 Chania, Greece;
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, Campus Caparica, 2819-516 Caparica, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Chemistry and Life Sciences Departments, NOVA School of Science and Technology, NOVA University of Lisbon, Campus Caparica, 2819-516 Caparica, Portugal
| | - Maria João Nunes
- LAQV, REQUIMTE, Associated Laboratory for Green Chemistry, Chemistry Department, NOVA School of Science and Technology, NOVA University of Lisbon, Campus Caparica, 2819-516 Caparica, Portugal; (M.J.N.); (L.C.B.)
| | - Vanda Marques
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (V.M.); (C.M.P.R.)
| | - Thekla I. Anastasiou
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, 71500 Heraklion Crete, Greece; (D.V.-M.); (T.I.A.); (E.K.); (E.V.); (T.D.)
| | - Eirini Kagiampaki
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, 71500 Heraklion Crete, Greece; (D.V.-M.); (T.I.A.); (E.K.); (E.V.); (T.D.)
| | - Emmanouela Vernadou
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, 71500 Heraklion Crete, Greece; (D.V.-M.); (T.I.A.); (E.K.); (E.V.); (T.D.)
| | - Thanos Dailianis
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, 71500 Heraklion Crete, Greece; (D.V.-M.); (T.I.A.); (E.K.); (E.V.); (T.D.)
| | - Nicolas Kalogerakis
- School of Chemical and Environmental Engineering, Technical University of Crete, 73100 Chania, Greece;
| | - Luís C. Branco
- LAQV, REQUIMTE, Associated Laboratory for Green Chemistry, Chemistry Department, NOVA School of Science and Technology, NOVA University of Lisbon, Campus Caparica, 2819-516 Caparica, Portugal; (M.J.N.); (L.C.B.)
| | - Cecília M. P. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (V.M.); (C.M.P.R.)
| | - Rita G. Sobral
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, Campus Caparica, 2819-516 Caparica, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Chemistry and Life Sciences Departments, NOVA School of Science and Technology, NOVA University of Lisbon, Campus Caparica, 2819-516 Caparica, Portugal
| | - Susana P. Gaudêncio
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, Campus Caparica, 2819-516 Caparica, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Chemistry and Life Sciences Departments, NOVA School of Science and Technology, NOVA University of Lisbon, Campus Caparica, 2819-516 Caparica, Portugal
| | - Manolis Mandalakis
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, 71500 Heraklion Crete, Greece; (D.V.-M.); (T.I.A.); (E.K.); (E.V.); (T.D.)
| |
Collapse
|
3
|
Oceanographic setting influences the prokaryotic community and metabolome in deep-sea sponges. Sci Rep 2022; 12:3356. [PMID: 35233042 PMCID: PMC8888554 DOI: 10.1038/s41598-022-07292-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 02/16/2022] [Indexed: 11/09/2022] Open
Abstract
Marine sponges (phylum Porifera) are leading organisms for the discovery of bioactive compounds from nature. Their often rich and species-specific microbiota is hypothesised to be producing many of these compounds. Yet, environmental influences on the sponge-associated microbiota and bioactive compound production remain elusive. Here, we investigated the changes of microbiota and metabolomes in sponges along a depth range of 1232 m. Using 16S rRNA gene amplicon sequencing and untargeted metabolomics, we assessed prokaryotic and chemical diversities in three deep-sea sponge species: Geodia barretti, Stryphnus fortis, and Weberella bursa. Both prokaryotic communities and metabolome varied significantly with depth, which we hypothesized to be the effect of different water masses. Up to 35.5% of microbial ASVs (amplicon sequence variants) showed significant changes with depth while phylum-level composition of host microbiome remained unchanged. The metabolome varied with depth, with relative quantities of known bioactive compounds increasing or decreasing strongly. Other metabolites varying with depth were compatible solutes regulating osmolarity of the cells. Correlations between prokaryotic community and the bioactive compounds in G. barretti suggested members of Acidobacteria, Proteobacteria, Chloroflexi, or an unclassified prokaryote as potential producers.
Collapse
|
4
|
Manconi R, Cubeddu T, Pronzato R, Sanna MA, Nieddu G, Gaino E, Stocchino GA. Collagenic architecture and morphotraits in a marine basal metazoan as a model for bioinspired applied research. J Morphol 2022; 283:585-604. [PMID: 35119713 PMCID: PMC9306819 DOI: 10.1002/jmor.21460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 11/22/2022]
Abstract
In some Porifera (Demospongiae: Keratosa), prototypes of the connective system are almost exclusively based on collagenic networks. We studied the topographic distribution, spatial layout, microtraits, and/or morphogenesis of these collagenic structures in Ircinia retidermata (Dictyoceratida: Irciniidae). Analyses were carried out on a clonal strain from sustainable experimental mariculture by using light and scanning electron microscopy. Histology revealed new insights on the widely diversified and complex hierarchical assemblage of collagenic structures. Key evolutionary novelties in the organization of sponge connective system were found out. The aquiferous canals are shaped as corrugate‐like pipelines conferring plasticity to the water circulation system. Compact clusters of elongated cells are putatively involved in a nutrient transferring system. Knob‐ended filaments are characterized by a banding pattern and micro‐components. Ectosome and outer endosome districts are the active fibrogenetic areas, where exogenous material constitutes an axial condensation nucleus for the ensuing morphogenesis. The new data can be useful to understand not only the evolutionary novelties occurring in the target taxon but also the morpho‐functional significance of its adaptive collagenic anatomical traits. In addition, data may give insights on both marine collagen sustainable applied researches along with evolutionary and phylogenetic analyses, thus highlighting sponges as a key renewable source for inspired biomaterials. Therefore, we also promote bioresources sustainable exploitation with the aim to provide new donors of marine collagen, thereby supporting conservation of wild populations/species.
Collapse
Affiliation(s)
- Renata Manconi
- Dipartimento di Medicina Veterinaria, Università di Sassari, Sassari, Italy
| | - Tiziana Cubeddu
- Dipartimento di Medicina Veterinaria, Università di Sassari, Sassari, Italy
| | - Roberto Pronzato
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università di Genova, Genova, Italy
| | - Marina A Sanna
- Dipartimento di Medicina Veterinaria, Università di Sassari, Sassari, Italy
| | - Gabriele Nieddu
- Dipartimento di Scienze Biomediche, Università di Sassari, Sassari, Italy
| | - Elda Gaino
- Viale Canepa 15/10, 16153 Sestri Ponente, Italy
| | | |
Collapse
|
5
|
Abstract
Covering: January to December 2017This review covers the literature published in 2017 for marine natural products (MNPs), with 740 citations (723 for the period January to December 2017) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1490 in 477 papers for 2017), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. Geographic distributions of MNPs at a phylogenetic level are reported.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. and Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
6
|
Reverter M, Tribalat MA, Pérez T, Thomas OP. Metabolome variability for two Mediterranean sponge species of the genus Haliclona: specificity, time, and space. Metabolomics 2018; 14:114. [PMID: 30830434 DOI: 10.1007/s11306-018-1401-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/25/2018] [Indexed: 01/01/2023]
Abstract
INTRODUCTION The study of natural variation of metabolites brings valuable information on the physiological state of the organisms as well as their phenotypic traits. In marine organisms, metabolome variability has mostly been addressed through targeted studies on metabolites of ecological or pharmaceutical interest. However, comparative metabolomics has demonstrated its potential to address the overall and complex metabolic variability of organisms. OBJECTIVES In this study, the intraspecific (temporal and spatial) variability of two Mediterranean Haliclona sponges (H. fulva and H. mucosa) was investigated through an untargeted and then targeted metabolomics approach and further compared to their interspecific variability. METHODS Samples of both species were collected monthly during 1 year in the coralligenous habitat of the Northwestern Mediterranean sae at Marseille and Nice. Their metabolomic profiles were obtained by UHPLC-QqToF analyses. RESULTS Marked variations were noticed in April and May for both species including a decrease in Shannon's diversity and concentration in specialized metabolites together with an increase in fatty acids and lyso-PAF like molecules. Spatial variations across different sampling sites could also be observed for both species, however in a lesser extent. CONCLUSIONS Synchronous metabolic changes possibly triggered by physiological factors like reproduction and/or environmental factors like an increase in the water temperature were highlighted for both Mediterranean Haliclona species inhabiting close habitats but displaying different biosynthetic pathways. Despite significative intraspecific variations, metabolomic variability remains minor when compared to interspecific variations for these congenerous species, therefore suggesting the predominance of genetic information of the holobiont in the observed metabolome.
Collapse
Affiliation(s)
- Miriam Reverter
- Marine Biodiscovery, School of Chemistry and Ryan Institute, National University of Ireland Galway (NUI Galway), University Road, Galway, H91 TK33, Ireland
| | - Marie-Aude Tribalat
- Geoazur, UMR Université Nice Sophia Antipolis-CNRS-IRD-OCA, 06560, Valbonne, France
| | - Thierry Pérez
- Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE), CNRS, IRD, Aix Marseille Université, Université Avignon, Station Marine d'Endoume, Rue de la Batterie des Lions, Marseille, France
| | - Olivier P Thomas
- Marine Biodiscovery, School of Chemistry and Ryan Institute, National University of Ireland Galway (NUI Galway), University Road, Galway, H91 TK33, Ireland.
- Geoazur, UMR Université Nice Sophia Antipolis-CNRS-IRD-OCA, 06560, Valbonne, France.
| |
Collapse
|
7
|
Padiglia A, Ledda FD, Padedda BM, Pronzato R, Manconi R. Long-term experimental in situ farming of Crambe crambe (Demospongiae: Poecilosclerida). PeerJ 2018; 6:e4964. [PMID: 29915695 PMCID: PMC6004114 DOI: 10.7717/peerj.4964] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 05/23/2018] [Indexed: 01/29/2023] Open
Abstract
Background The marine sponge Crambe crambe was chosen as an experimental model of sustainable shallow-water mariculture in the Sardinian Sea (Western Mediterranean) to provide biomass with high potential in applied research. Methods Explants were cultured in four long-term experiments (19 and 31 months at ca. 2.5 m depth), to determine the suitability of new culture techniques by testing substrata and seeding time (season), and monitoring survival and growth. Explants were excised and grown in an experimental plant close to the wild donor sponge population. Percentage growth rate (GR%) was measured in terms of surface cover area, and explant survival was monitored in situ by means of a digital photo camera. Results Explant survival was high throughout the trial, ranging from 78.57% to 92.85% on travertine tiles and from 50% to 71.42% on oyster shells. A few instances of sponge regression were observed. Explant cover area correlated positively with season on two substrata, i.e., tiles and shells. The surface cover area and GR% of explants were measured in the starting phase and monitored up to the end of the trial. High GR% values were observed both on tiles (>21%) and on oyster shells (>15%). Discussion The data on the behaviour and life-style of cultured fragments, together with an increase >2,400% in cover area, demonstrate that in situ aquaculture is a viable and sustainable method for the shallow-water biomass supply of Crambe crambe.
Collapse
Affiliation(s)
- Andrea Padiglia
- Department for Earth, Environment and Life Sciences, University of Genova, Genova, Italy.,Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Fabio D Ledda
- Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Bachisio M Padedda
- Department of Architecture, Design and Urban Planning, University of Sassari, Sassari, Italy
| | - Roberto Pronzato
- Department for Earth, Environment and Life Sciences, University of Genova, Genova, Italy
| | - Renata Manconi
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| |
Collapse
|