1
|
Lv X, Zhang W, Chu S, Zhang H, Wu Y, Zhu Y, Yang D, Zhu Y, Mans DRA, Chen H, Liang Z. Endophytic fungus Penicillium steckii DF33 promoted tanshinones biosynthesis in Salvia miltiorrhiza by regulating the expression of CYP450 genes. Gene 2024; 899:148094. [PMID: 38142897 DOI: 10.1016/j.gene.2023.148094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/03/2023] [Accepted: 12/17/2023] [Indexed: 12/26/2023]
Abstract
Salvia miltiorrhiza, a prominent traditional Chinese medicinal resource, has been extensively employed in the management of cardiovascular and cerebrovascular ailments. Ensuring the consistency of S. miltiorrhiza raw materials revolves around the imperative task of maintaining stable tanshinones content and composition. An effective approach in this regard involves the utilization of endophytic fungi as inducers. Within this context, our study spotlights an endophytic fungus, Penicillium steckii DF33, isolated from the roots of S. miltiorrhiza. Remarkably, this fungus has demonstrated a significant capacity to boost the biosynthesis and accumulation of tanshinones. The primary objective of this investigation is to elucidate the underlying regulatory mechanism by which DF33 enhances and regulates the biosynthesis and accumulation of tanshinones. This is achieved through its influence on the differential expression of crucial CYP450 genes within the S. miltiorrhiza hairy roots system. The results revealed that the DF33 elicitor not only promotes the growth of hairy roots but also enhances the accumulation of tanshinones. Notably, the content of cryptotanshinone was reached 1.6452 ± 0.0925 mg g-1, a fourfold increase compared to the control group. Our qRT-PCR results further demonstrate that the DF33 elicitor significantly up-regulates the expression of most key enzyme genes (GGPPS, CPS1, KSL1, CYP76AH1, CYP76AH3, CYP76AK1, CYP71D411) involved in the tanshinone biosynthesis pathway. This effect is particularly pronounced in certain critical CYP450 genes and Tanshinone ⅡA synthase (SmTⅡAS), with their expression levels peaking at 7 days or 14 days, respectively. In summary, endophytic P. steckii DF33 primarily enhances tanshinone biosynthesis by elevating the expression levels of pivotal enzyme genes associated with the modification and transformation stages within the tanshinone biosynthesis pathway. These findings underscore the potential of employing plant probiotics, specifically endophytic and root-associated microbes, to facilitate the biosynthesis and transformation of vital constituents in medicinal plants, and this approach holds promise for enhancing the quality of traditional Chinese medicinal materials.
Collapse
Affiliation(s)
- Xiaoman Lv
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Wenyi Zhang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Siyuan Chu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Haihua Zhang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Yongqun Wu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Yun Zhu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Dongfeng Yang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Yonghong Zhu
- Tianjin Tasly Holding Group Co., Ltd., Tianjin 300410, China
| | - Dennis R A Mans
- Department of Pharmacology, Faculty of Medical Sciences, Anton de Kom University of Suriname, Paramaribo 9212, Suriname
| | - Haimin Chen
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China.
| | - Zongsuo Liang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China.
| |
Collapse
|
2
|
Chen C, Xiao L, Luo X, Cai J, Huang L, Tao H, Zhou X, Tan Y, Liu Y. Identifying Marine-Derived Tanzawaic Acid Derivatives as Novel Inhibitors against Osteoclastogenesis and Osteoporosis via Downregulation of NF-κB and NFATc1 Activation. J Med Chem 2024; 67:2602-2618. [PMID: 38301128 DOI: 10.1021/acs.jmedchem.3c01748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
To discover novel osteoclast-targeting antiosteoporosis leads from natural products, we identified 40 tanzawaic acid derivatives, including 22 new ones (1-8, 14-19, 27-32, 37, and 38), from the South China Sea mangrove-derived fungus Penicillium steckii SCSIO 41025. Penicisteck acid F (2), one of the new derivatives showing the most potent NF-κB inhibitory activity, remarkably inhibited osteoclast generation in vitro. Mechanistically, 2 reduced RANKL-induced IκBα degradation, NF-κB p65 nuclear translocation, the activation and nuclear translocation of NFATc1, and the relevant mRNA expression. NF-κB p65 could be a potential molecular target for 2, which has been further determined by the cellular thermal shift assay, surface plasmon resonance, and the gene knock-down assay. Moreover, 2 could also alleviate osteoporosis in ovariectomized mice by reducing the quantities of osteoclasts. Our finding offered a novel potential inhibitor of osteoclastogenesis and osteoporosis for further development of potent antiosteoporosis agents.
Collapse
Affiliation(s)
- Chunmei Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Lingxiang Xiao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Xiaowei Luo
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Jian Cai
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Lishan Huang
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Huaming Tao
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yanhui Tan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| |
Collapse
|
3
|
Murata T, Tsutsui H, Yoshida T, Kubota H, Hiraishi S, Natsukawa H, Suzuki Y, Hiraga D, Mori T, Maekawa Y, Tateyama S, Toyoyama K, Ito K, Suzuki K, Yonekura K, Shibata N, Sato T, Tasaki Y, Inohana T, Takano A, Egashira N, Honda M, Umezaki Y, Shiina I. First Total Synthesis of Tanzawaic Acid B. ACS OMEGA 2023; 8:27703-27709. [PMID: 37546667 PMCID: PMC10399178 DOI: 10.1021/acsomega.3c03634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/27/2023] [Indexed: 08/08/2023]
Abstract
The first total synthesis of (+)-tanzawaic acid B, a natural polyketide bearing a pentadienoic ester and octalin moiety, has been accomplished. The synthetic improvement from previous synthetic conditions facilitated our gram-scale synthesis of the chiral octalin that possesses seven stereogenic centers and that is the core skeleton of almost all of the tanzawaic acid family.
Collapse
Affiliation(s)
- Takatsugu Murata
- Department of Applied Chemistry,
Faculty of Science, Tokyo University of
Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Hisazumi Tsutsui
- Department of Applied Chemistry,
Faculty of Science, Tokyo University of
Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Takumi Yoshida
- Department of Applied Chemistry,
Faculty of Science, Tokyo University of
Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Hirokazu Kubota
- Department of Applied Chemistry,
Faculty of Science, Tokyo University of
Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Shintaro Hiraishi
- Department of Applied Chemistry,
Faculty of Science, Tokyo University of
Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Hiyo Natsukawa
- Department of Applied Chemistry,
Faculty of Science, Tokyo University of
Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yuki Suzuki
- Department of Applied Chemistry,
Faculty of Science, Tokyo University of
Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Daiki Hiraga
- Department of Applied Chemistry,
Faculty of Science, Tokyo University of
Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Takahiro Mori
- Department of Applied Chemistry,
Faculty of Science, Tokyo University of
Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yutaro Maekawa
- Department of Applied Chemistry,
Faculty of Science, Tokyo University of
Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Satoru Tateyama
- Department of Applied Chemistry,
Faculty of Science, Tokyo University of
Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Kiyotaka Toyoyama
- Department of Applied Chemistry,
Faculty of Science, Tokyo University of
Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Keiichi Ito
- Department of Applied Chemistry,
Faculty of Science, Tokyo University of
Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Kyohei Suzuki
- Department of Applied Chemistry,
Faculty of Science, Tokyo University of
Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Keita Yonekura
- Department of Applied Chemistry,
Faculty of Science, Tokyo University of
Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Natsumi Shibata
- Department of Applied Chemistry,
Faculty of Science, Tokyo University of
Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Teruyuki Sato
- Department of Applied Chemistry,
Faculty of Science, Tokyo University of
Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yasutaka Tasaki
- Department of Applied Chemistry,
Faculty of Science, Tokyo University of
Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Takehiko Inohana
- Department of Applied Chemistry,
Faculty of Science, Tokyo University of
Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Atsuhiro Takano
- Department of Applied Chemistry,
Faculty of Science, Tokyo University of
Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Naoki Egashira
- Department of Applied Chemistry,
Faculty of Science, Tokyo University of
Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Masaki Honda
- Department of Applied Chemistry,
Faculty of Science, Tokyo University of
Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yuma Umezaki
- Department of Applied Chemistry,
Faculty of Science, Tokyo University of
Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Isamu Shiina
- Department of Applied Chemistry,
Faculty of Science, Tokyo University of
Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
4
|
Song Y, Tan Y, She J, Chen C, Wang J, Hu Y, Pang X, Wang J, Liu Y. Tanzawaic Acid Derivatives from the Marine-Derived Penicillium steckii as Inhibitors of RANKL-Induced Osteoclastogenesis. JOURNAL OF NATURAL PRODUCTS 2023; 86:1171-1178. [PMID: 36726314 DOI: 10.1021/acs.jnatprod.2c00865] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Seven new tanzawaic acid derivatives, steckwaic acids E-K (1-7), and one new benzene derivate (8), together with seven known tanzawaic acid analogues (9-16) were isolated from the marine algicolous fungus Penicillium steckii SCSIO 41040. The structures and absolute configurations of these new compounds (1-8) were determined by spectroscopic analyses, X-ray diffraction, and comparison of ECD spectra to calculations. Compounds 2, 10, and 15 inhibited lipopolysaccharide (LPS)-induced nuclear factor kappa-B (NF-κB) with IC50 values of 10.4, 18.6, and 15.2 μM, respectively. Compound 2 could suppress the receptor activator of NF-κB ligand (RANKL)-induced osteoclast differentiation in bone marrow macrophage cells (BMMCs). To the best of our knowledge, this is the first report of osteoclastogenesis inhibitory activity for tanzawaic acid derivatives.
Collapse
Affiliation(s)
- Yingying Song
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, People's Republic of China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, People's Republic of China
| | - Yanhui Tan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Jianglian She
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, People's Republic of China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, People's Republic of China
| | - Chunmei Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, People's Republic of China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, People's Republic of China
| | - Jiamin Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, People's Republic of China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, People's Republic of China
| | - Yiwei Hu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, People's Republic of China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, People's Republic of China
| | - Xiaoyan Pang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, People's Republic of China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, People's Republic of China
| | - Junfeng Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, People's Republic of China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, People's Republic of China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, People's Republic of China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, People's Republic of China
| |
Collapse
|
5
|
de Menezes AAPM, Aguiar RPS, Santos JVO, Sarkar C, Islam MT, Braga AL, Hasan MM, da Silva FCC, Sharifi-Rad J, Dey A, Calina D, Melo-Cavalcante AAC, Sousa JMC. Citrinin as a potential anti-cancer therapy: A comprehensive review. Chem Biol Interact 2023:110561. [PMID: 37230156 DOI: 10.1016/j.cbi.2023.110561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/09/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023]
Abstract
Citrinin (CIT) is a polyketide-derived mycotoxin, which is produced by many fungal strains belonging to the gerena Monascus, Aspergillus, and Penicillium. It has been postulated that mycotoxins have several toxic mechanisms and are potentially used as antineoplastic agents. Therefore, the present study carried out a systematic review, including articles from 1978 to 2022, by collecting evidence in experimental studies of CIT antiplorifactive activity in cancer. The Data indicate that CIT intervenes in important mediators and cell signaling pathways, including MAPKs, ERK1/2, JNK, Bcl-2, BAX, caspases 3,6,7 and 9, p53, p21, PARP cleavage, MDA, reactive oxygen species (ROS) and antioxidant defenses (SOD, CAT, GST and GPX). These factors demonstrate the potential antitumor drug CIT in inducing cell death, reducing DNA repair capacity and inducing cytotoxic and genotoxic effects in cancer cells.
Collapse
Affiliation(s)
- Ag-Anne P M de Menezes
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64, 049-550, Brazil.
| | - Raí P S Aguiar
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64, 049-550, Brazil.
| | - José V O Santos
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64, 049-550, Brazil.
| | - Chandan Sarkar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| | - Muhammad T Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| | - Antonio L Braga
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64, 049-550, Brazil.
| | - Mohammad M Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh.
| | - Felipe C C da Silva
- Postgraduate Program in Pharmaceutical Science, Federal University of Piauí, Teresina, PI, Brazil.
| | | | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | - Ana A C Melo-Cavalcante
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64, 049-550, Brazil; Postgraduate Program in Pharmaceutical Science, Federal University of Piauí, Teresina, PI, Brazil.
| | - João M C Sousa
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64, 049-550, Brazil; Postgraduate Program in Pharmaceutical Science, Federal University of Piauí, Teresina, PI, Brazil.
| |
Collapse
|
6
|
Bernal A, Jacob S, Andresen K, Yemelin A, Hartmann H, Antelo L, Thines E. Identification of the polyketide synthase gene responsible for the synthesis of tanzawaic acids in Penicillium steckii IBWF104-06. Fungal Genet Biol 2023; 164:103750. [PMID: 36379411 DOI: 10.1016/j.fgb.2022.103750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
Microorganisms have been used as biological control agents (BCAs) in agriculture for a long time, but their importance has increased dramatically over the last few years. The Penicillium steckii IBWF104-06 strain has presented strong BCA activity in greenhouse experiments performed against phytopathogenic fungi and oomycetes. P. steckii strains generally produce different antifungal tanzawaic acids; interesting compounds known to be catalyzed by polyketide synthetases in other fungi. Since the decalin structure is characteristic for tanzawaic acids, two polyketide synthase genes (PsPKS1 and PsPKS2) were selected for further analysis, which have similarity in sequence and gene cluster structure with genes that are known to be responsible for the biosynthesis of decalin-containing compounds. Subsequently, gene-inactivation mutants of both PsPKS1 and PsPKS2 have been generated. It was found, that the ΔPspks1 mutant cannot produce tanzawaic acids any more, whereas reintegration of the original PsPKS1 gene into the genome of ΔPspks1 reestablished tanzawaic acid production. The mutant ΔPspks2 is not altered in tanzawaic acids production. Interestingly, both mutants ΔPsPKS1 and ΔPsPKS2 still display strong BCA activity, indicating that the mechanism of action is not related to the production of tanzawaic acids.
Collapse
Affiliation(s)
- Azahara Bernal
- Institute of Biotechnology and Drug Research gGmbH (IBWF), Hanns-Dieter-Hüsch-Weg 17, D-55128 Mainz, Germany
| | - Stefan Jacob
- Institute of Biotechnology and Drug Research gGmbH (IBWF), Hanns-Dieter-Hüsch-Weg 17, D-55128 Mainz, Germany
| | - Karsten Andresen
- Johannes Gutenberg-University Mainz, Microbiology and Biotechnology at the Institute of Molecular Physiology, Hanns-Dieter-Hüsch-Weg 17, D-55128 Mainz, Germany
| | - Alexander Yemelin
- Institute of Biotechnology and Drug Research gGmbH (IBWF), Hanns-Dieter-Hüsch-Weg 17, D-55128 Mainz, Germany
| | | | - Luis Antelo
- Institute of Biotechnology and Drug Research gGmbH (IBWF), Hanns-Dieter-Hüsch-Weg 17, D-55128 Mainz, Germany; Johannes Gutenberg-University Mainz, Microbiology and Biotechnology at the Institute of Molecular Physiology, Hanns-Dieter-Hüsch-Weg 17, D-55128 Mainz, Germany.
| | - Eckhard Thines
- Institute of Biotechnology and Drug Research gGmbH (IBWF), Hanns-Dieter-Hüsch-Weg 17, D-55128 Mainz, Germany; Johannes Gutenberg-University Mainz, Microbiology and Biotechnology at the Institute of Molecular Physiology, Hanns-Dieter-Hüsch-Weg 17, D-55128 Mainz, Germany.
| |
Collapse
|
7
|
Uncommon Polyketides from Penicillium steckii AS-324, a Marine Endozoic Fungus Isolated from Deep-Sea Coral in the Magellan Seamount. Int J Mol Sci 2022; 23:ijms23116332. [PMID: 35683011 PMCID: PMC9181172 DOI: 10.3390/ijms23116332] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/28/2022] [Accepted: 05/28/2022] [Indexed: 11/29/2022] Open
Abstract
Four unusual steckwaic acids E–H (1–4), possessing a rarely described acrylic acid unit at C-4 (1–3) or a double bond between C-12 and C-13 (4) are reported for the first time, along with four new analogues (5–8) and two known congeners (9 and 10). They were purified from the organic extract of Penicillium steckii AS-324, an endozoic fungus obtained from a deep-sea coral Acanthogorgiidae sp., which was collected from the Magellan Seamount at a depth of 1458 m. Their structures were determined by the interpretation of NMR and mass spectroscopic data. The relative and absolute configurations were determined by NOESY correlations, X-ray crystallographic analysis, and ECD calculations. All compounds were tested for their antimicrobial activities against human- and aquatic-pathogenic bacteria and plant-related pathogenic fungi.
Collapse
|
8
|
Hu XY, Li XM, Wang BG, Meng LH. Tanzawaic Acid Derivatives: Fungal Polyketides from the Deep-Sea Coral-Derived Endozoic Penicillium steckii AS-324. JOURNAL OF NATURAL PRODUCTS 2022; 85:1398-1406. [PMID: 35576457 DOI: 10.1021/acs.jnatprod.2c00211] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ten new tanzawaic acids, namely, steckwaic acids A-D (1-4), 11-ketotanzawaic acid D (5), 6,15-dihydroxytanzawaic acid M (6), 15R-methoxytanzawaic acid M (7), 15S-methoxytanzawaic acid M (8), 8-hydroxytanzawaic acid M (9), and 8-hydroxytanzawaic acid B (10), together with four known analogues (11-14), were isolated and identified from the endozoic fungus Penicillium steckii AS-324, which was obtained from a deep-sea Acanthogorgiidae sp. coral that was collected from the Magellan seamount in the Western Pacific Ocean. Structurally, steckwaic acids A-D (1-4) represent the first tanzawaic acid derivatives containing a naphthalene ring. Their structures were elucidated by detailed interpretation of the NMR spectroscopic and mass spectrometric data. X-ray crystallographic analysis and ECD calculations confirmed their structures and absolute configurations. New compounds 1, 5, and 9 exhibited activities against aquatic pathogenic bacteria Micrococcus luteus, Vibrio anguillarum, and Pseudomonas aeruginosa with MICs of 2, 4, and 4 μg/mL, respectively.
Collapse
Affiliation(s)
- Xue-Yi Hu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Nanhai Road 7, Qingdao 266071, People's Republic of China
- College of Marine Science, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, People's Republic of China
| | - Xiao-Ming Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Nanhai Road 7, Qingdao 266071, People's Republic of China
| | - Bin-Gui Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Nanhai Road 7, Qingdao 266071, People's Republic of China
- College of Marine Science, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, People's Republic of China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, People's Republic of China
| | - Ling-Hong Meng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Nanhai Road 7, Qingdao 266071, People's Republic of China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, People's Republic of China
| |
Collapse
|
9
|
Wang J, Li T, Wang P, Ding W, Xu J. Tanzawaic Acids from a Deep-Sea Derived Penicillium Species. JOURNAL OF NATURAL PRODUCTS 2022; 85:1218-1228. [PMID: 35420798 DOI: 10.1021/acs.jnatprod.1c01020] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Twelve new tanzawaic acid derivatives, penitanzacids A-F (1-6), and G-J (9-12), and hatsusamides C-D (13-14), together with two revised structures [tanzawaic acids I-J (7-8)] and three known compounds (15-17) were isolated from the deep-sea-derived fungus Penicillium sp. KWF32. Their structures including absolute configurations were elucidated by spectroscopic data analysis, HRESIMS data, modified Mosher's method, chemical degradation studies, ECD calculations, single crystal X-ray diffraction, and biogenic considerations in comparison with reported known analogues. Penitanzacids H-J (10-12) represent the first examples of this family with a C3 side chain and support the proposed biosynthetic pathway in which the side chain is connected to the decalin backbone. Hatsusamides C-D (13-14) have a hybrid skeleton formed by linking a tanzawaic acid and a diketopiperazine through an ester bond. Compounds 13 and 14 exhibit weak cytotoxicity against the A549 cell line.
Collapse
Affiliation(s)
- Jiaqi Wang
- Institute of Marine Biology & Pharmacology, Ocean College, Zhoushan Campus, Zhejiang University, Zhoushan 316021, People's Republic of China
| | - Taiwei Li
- Institute of Marine Biology & Pharmacology, Ocean College, Zhoushan Campus, Zhejiang University, Zhoushan 316021, People's Republic of China
| | - Pinmei Wang
- Institute of Marine Biology & Pharmacology, Ocean College, Zhoushan Campus, Zhejiang University, Zhoushan 316021, People's Republic of China
| | - Wanjing Ding
- Institute of Marine Biology & Pharmacology, Ocean College, Zhoushan Campus, Zhejiang University, Zhoushan 316021, People's Republic of China
| | - Jinzhong Xu
- Institute of Marine Biology & Pharmacology, Ocean College, Zhoushan Campus, Zhejiang University, Zhoushan 316021, People's Republic of China
| |
Collapse
|
10
|
Dramae A, Intaraudom C, Bunbamrung N, Boonyuen N, Auncharoen P, Pittayakhajonwut P. Antimicrobial tanzawaic acid derivatives from the endophytic Penicillium citrinum BCC71086. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Zhao Y, Sun C, Huang L, Zhang X, Zhang G, Che Q, Li D, Zhu T. Talarodrides A-F, Nonadrides from the Antarctic Sponge-Derived Fungus Talaromyces sp. HDN1820200. JOURNAL OF NATURAL PRODUCTS 2021; 84:3011-3019. [PMID: 34842422 DOI: 10.1021/acs.jnatprod.1c00203] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Six new nonadride derivatives, named talarodrides A-F (1-6), were isolated from the Antarctic sponge-derived fungus Talaromyces sp. HDN1820200. All structures including the absolute configurations were deduced by extensive spectroscopic analysis and computational ECD calculations. Compounds 1-4 share a rare caged bicyclo[4.3.1]-deca-1,6-diene with a bridgehead olefin and maleic anhydride core skeleton, while compounds 5 and 6 possess the first case of a naturally occurring 5/7/6 methanocyclonona[c]furan skeleton. Talarodride A (1) and talarodride B (2) showed selective inhibitory effects against Proteus mirabilis and Vibrio parahemolyticus with MICs of 3.13-12.5 μM.
Collapse
Affiliation(s)
- Yi Zhao
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Chunxiao Sun
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Luyao Huang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Xiao Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Guojian Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| | - Qian Che
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Dehai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
- Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| |
Collapse
|
12
|
Wu XZ, Huang WJ, Liu W, Mándi A, Zhang Q, Zhang L, Zhang W, Kurtán T, Yuan CS, Zhang C. Penicisteckins A-F, Isochroman-Derived Atropisomeric Dimers from Penicillium steckii HNNU-5B18. JOURNAL OF NATURAL PRODUCTS 2021; 84:2953-2960. [PMID: 34787427 DOI: 10.1021/acs.jnatprod.1c00787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Penicisteckins A-D (1-4), two pairs of atropodiastereomeric biaryl-type hetero- and homodimeric bis-isochromans with 7,5'- and 7,7'-linkages and a pair of atropodiastereomeric 2-(isochroman-5-yl)-1,4-benzoquinone derivatives [penicisteckins E (5) and F (6)], were isolated from the Penicillium steckii HNNU-5B18. Their structures including the absolute configuration were determined by extensive spectroscopic and single-crystal X-ray diffraction analysis and TDDFT-ECD calculations. Both the bis-isochromans and the isochroman/1,4-benzoquinone conjugates represent novel biaryl scaffolds containing both central and axial chirality elements. The monomer anserinone B (8) exhibited potent antibacterial activities against Staphylococcus aureus ATCC 29213 and methicillin-resistant Staphylococcus aureus with minimal inhibition concentration values ranging from 2 to 8 μg mL-1. Plausible biosynthetic pathways of 1-6 are proposed, which suggest how the absolute configurations of the isolates were established during the biosynthetic scheme.
Collapse
Affiliation(s)
- Xiao-Zhen Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Wen-Jun Huang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Wei Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Attila Mándi
- Department of Organic Chemistry, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
| | - Qingbo Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Liping Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Wenjun Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Tibor Kurtán
- Department of Organic Chemistry, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
| | - Cheng-Shan Yuan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| |
Collapse
|
13
|
Chen S, Cai R, Liu Z, Cui H, She Z. Secondary metabolites from mangrove-associated fungi: source, chemistry and bioactivities. Nat Prod Rep 2021; 39:560-595. [PMID: 34623363 DOI: 10.1039/d1np00041a] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Covering 1989 to 2020The mangrove forests are a complex ecosystem occurring at tropical and subtropical intertidal estuarine zones and nourish a diverse group of microorganisms including fungi, actinomycetes, bacteria, cyanobacteria, algae, and protozoa. Among the mangrove microbial community, mangrove associated fungi, as the second-largest ecological group of the marine fungi, not only play an essential role in creating and maintaining this biosphere but also represent a rich source of structurally unique and diverse bioactive secondary metabolites, attracting significant attention of organic chemists and pharmacologists. This review summarizes the discovery relating to the source and characteristics of metabolic products isolated from mangrove-associated fungi over the past thirty years (1989-2020). Its emphasis included 1387 new metabolites from 451 papers, focusing on bioactivity and the unique chemical diversity of these natural products.
Collapse
Affiliation(s)
- Senhua Chen
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China. .,School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Runlin Cai
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China. .,College of Science, Shantou University, Shantou 515063, China
| | - Zhaoming Liu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China. .,State Key Laboratory of Applied Microbiology Southern China, Guangdong Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Hui Cui
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China. .,School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhigang She
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
14
|
Wang Q, Zhang K, Wang W, Zhang G, Zhu T, Che Q, Gu Q, Li D. Amphiepicoccins A-J: Epipolythiodioxopiperazines from the Fish-Gill-Derived Fungus Epicoccum nigrum HDN17-88. JOURNAL OF NATURAL PRODUCTS 2020; 83:524-531. [PMID: 31975590 DOI: 10.1021/acs.jnatprod.9b01242] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ten new epipolythiodioxopiperazines (ETPs), namely, amphiepicoccins A-J (1-10), were isolated from the fish-gill-derived fungus Epicoccum nigrum HDN17-88. Their structures were deduced from extensive spectroscopic data and electronic circular dichroism (ECD) calculations. Amphiepicoccin A (1) which contains an aromatic indole motif is unprecedented among the epicoccin type of ETPs. Compounds 1, 3, and 6 displayed anti-HSV-2 activities, with IC50 values of 70, 64, and 29 μM, respectively (acyclovir as positive control with an IC50 value of 31 μM), while 5 and 6 also revealed inhibitory activity against Bacillus subtilis with minimum inhibitory concentration (MIC) values of 13 and 25 μM, respectively.
Collapse
Affiliation(s)
- Qiuying Wang
- School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
| | - Kaijin Zhang
- School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
| | - Wei Wang
- School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
| | - Guojian Zhang
- School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
| | - Tianjiao Zhu
- School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
| | - Qian Che
- School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
| | - Qianqun Gu
- School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
| | - Dehai Li
- School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
- Laboratory for Marine Drugs and Bioproducts , Pilot National Laboratory for Marine Science and Technology , Qingdao , 266237 , People's Republic of China
| |
Collapse
|
15
|
Yu G, Sun Z, Peng J, Zhu M, Che Q, Zhang G, Zhu T, Gu Q, Li D. Secondary Metabolites Produced by Combined Culture of Penicillium crustosum and a Xylaria sp. JOURNAL OF NATURAL PRODUCTS 2019; 82:2013-2017. [PMID: 31265288 DOI: 10.1021/acs.jnatprod.9b00345] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Four new alkyl aromatics, penixylarins A-D (1-4), along with the known biogenetically related 1,3-dihydroxy-5-(12-hydroxyheptadecyl)benzene (5) and 1,3-dihydroxy-5-(12-sulfoxyheptadecyl)benzene (6), were isolated from a mixed culture of the Antarctic deep-sea-derived fungus Penicillium crustosum PRB-2 and the mangrove-derived fungus Xylaria sp. HDN13-249. UPLC-MS data and an analysis of structural features showed that compounds 1 and 2 were produced by collaboration of the two fungi, while compounds 3-6 could be produced by Xylaria sp. HDN13-249 alone, but in noticeably increased quantities by cocultivation. Compounds 2, 3, 5, and 6 showed antibacterial activity against a panel of strains, and compound 3 possessed potential antituberculosis effects (MIC = 6.25 μM against Mycobacterium phlei).
Collapse
Affiliation(s)
- Guihong Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
| | - Zichao Sun
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
| | - Jixing Peng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute , Chinese Academy of Fishery Sciences , Qingdao 266071 , People's Republic of China
| | - Meilin Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
| | - Qian Che
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
| | - Guojian Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
- Laboratory for Marine Drugs and Bioproducts of Qingdao Pilot National Laboratory for Marine Science and Technology , Qingdao 266237 , People's Republic of China
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
- Laboratory for Marine Drugs and Bioproducts of Qingdao Pilot National Laboratory for Marine Science and Technology , Qingdao 266237 , People's Republic of China
| | - Qianqun Gu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
| | - Dehai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
- Laboratory for Marine Drugs and Bioproducts of Qingdao Pilot National Laboratory for Marine Science and Technology , Qingdao 266237 , People's Republic of China
| |
Collapse
|
16
|
Yu G, Wang Q, Liu S, Zhang X, Che Q, Zhang G, Zhu T, Gu Q, Li D. Methylsulfonylated Polyketides Produced by Neosartorya udagawae HDN13-313 via Exogenous Addition of Small Molecules. JOURNAL OF NATURAL PRODUCTS 2019; 82:998-1001. [PMID: 30785753 DOI: 10.1021/acs.jnatprod.9b00035] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Two new polyketides modified with a rare methylsulfonyl group, 3-methoxy-6-methyl-5-(methylsulfonyl)benzene-1,2,4-triol (1) and neosartoryone A (2), along with a biogenetically related compound (3), were isolated from Neosartorya udagawae HDN13-313 cultivated with the DNA methyltransferase inhibitor 5-azacytidine. The methylsulfonyl group of 1 and 2 was proven to be derived from DMSO, which was used as the solvent to dissolve 5-azacytidine. This is the first report of a fungus that can achieve a sulfonylation-like modification of natural products utilizing DMSO as a sulfur source. Compound 2 showed lipid-lowering activity in vitro comparable to simvastatin.
Collapse
Affiliation(s)
- Guihong Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
| | - Qiuying Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
| | - Shan Liu
- Marine Biomedical Research Institute of Qingdao , Qingdao 266003 , People's Republic of China
| | - Xiaomin Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
| | - Qian Che
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
| | - Guojian Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
- Laboratory for Marine Drugs and Bioproducts of Qingdao Pilot National Laboratory for Marine Science and Technology , Qingdao 266237 , People's Republic of China
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
- Laboratory for Marine Drugs and Bioproducts of Qingdao Pilot National Laboratory for Marine Science and Technology , Qingdao 266237 , People's Republic of China
| | - Qianqun Gu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
| | - Dehai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
- Laboratory for Marine Drugs and Bioproducts of Qingdao Pilot National Laboratory for Marine Science and Technology , Qingdao 266237 , People's Republic of China
| |
Collapse
|
17
|
Yu G, Wu G, Sun Z, Zhang X, Che Q, Gu Q, Zhu T, Li D, Zhang G. Cytotoxic Tetrahydroxanthone Dimers from the Mangrove-Associated Fungus Aspergillus versicolor HDN1009. Mar Drugs 2018; 16:md16090335. [PMID: 30223483 PMCID: PMC6164687 DOI: 10.3390/md16090335] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/10/2018] [Accepted: 09/12/2018] [Indexed: 01/04/2023] Open
Abstract
Three new tetrahydroxanthone dimers, 5-epi-asperdichrome (1), versixanthones N (2), and O (3), were isolated from the mangrove-derived fungus Aspergillus versicolor HDN1009. Their structures, including the absolute configurations, were elucidated by NMR, HRMS, and circular dichroism (CD) experiments. Among them, compound 1 was the second example of tetrahydroxanthone dimers, which dimerized by a rare diaryl ether linkage and showed promising antibacterial activities against Vibrio parahemolyticus, Bacillus subtilis, Mycobacterium phlei, and Pseudomonas aeruginosa, with MIC values ranging from 100 μM to 200 μM; whilst compounds 2 and 3 exhibited extensive cytotoxicities against five cancer cell lines (HL-60, K562, H1975, MGC803, and HO-8910), with IC50 values ranging from 1.7 μM to 16.1 μM.
Collapse
Affiliation(s)
- Guihong Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Guangwei Wu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Zichao Sun
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Xiaomin Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Qian Che
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Qianqun Gu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts of Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Dehai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts of Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China.
- Open Studio for Druggability Research of Marine Natural Products, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Guojian Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts of Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
18
|
Zhang Z, He X, Che Q, Zhang G, Zhu T, Gu Q, Li D. Sorbicillasins A⁻B and Scirpyrone K from a Deep-Sea-Derived Fungus, Phialocephala sp. FL30r. Mar Drugs 2018; 16:E245. [PMID: 30041473 PMCID: PMC6070939 DOI: 10.3390/md16070245] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/18/2018] [Accepted: 07/18/2018] [Indexed: 01/26/2023] Open
Abstract
Two new nitrogen-containing sorbicillinoids named sorbicillasins A and B (1 and 2) and a new 3,4,6-trisubstituted α-pyrone derivative, scirpyrone K (3), together with two known biosynthetically related polyketides (4⁻5), were isolated from the deep-sea-derived fungus Phialocephala sp. FL30r by using the OSMAC (one strain-many compounds) method. The structures of 1⁻3, including absolute configurations, were deduced based on MS, NMR, and time-dependent density functional theory (TD-DFT) calculations of specific ECD (electronic circular dichroism) spectra. Compounds 1 and 2 possessed a novel hexahydropyrimido[2,1-a] isoindole moiety, and compound 3 exhibited weak radical scavenging activity against DPPH (2,2-diphenyl-1-picrylhydrazyl) with an IC50 value of 27.9 μM.
Collapse
Affiliation(s)
- Zhenzhen Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Xueqian He
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Qian Che
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Guojian Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Qianqun Gu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Dehai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
19
|
Tanzawaic acid derivatives from freshwater sediment-derived fungus Penicillium sp. Fitoterapia 2018; 128:258-264. [PMID: 29778575 DOI: 10.1016/j.fitote.2018.05.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 02/06/2023]
Abstract
Chemical investigation of a freshwater sediment-derived fungus, Penicillium sp. (S1a1), led to the isolation of three new tanzawaic acid derivatives, including penitanzchroman (1), tanzawaic acids Y (2) and Z (3), along with six known tanzawaic acid analogues (4-9), three known isochromans (10-12) and two known benzoquinones (13 and 14). The structures of the new compounds were established based on high-resolution mass spectrometry, and detailed analysis of one- and two-dimensional NMR spectroscopy. The relative configuration of the new compounds was assigned on the basis of NMR spectroscopic data including ROESY spectra. The absolute configuration was determined based on the specific optical rotation, in addition to biogenetic considerations in comparison with related co-isolated known metabolites. Penitanzchroman (1) constitutes a hitherto unprecedented skeleton, formed of tanzawaic acid A (5) and (3S)-6-hydroxy-8-methoxy-3,5-dimethylisochroman (10) linked by a CC bond. Moreover, all compounds were evaluated for their antibacterial and cytotoxic activities.
Collapse
|