1
|
Kumari A, Singh M, Sharma R, Kumar T, Jindal N, Maan S, Joshi VG. Apoptin NLS2 homodimerization strategy for improved antibacterial activity and bio-stability. Amino Acids 2023; 55:1405-1416. [PMID: 37725185 DOI: 10.1007/s00726-023-03321-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/21/2023] [Indexed: 09/21/2023]
Abstract
The emergence of antibiotic resistance prompts exploration of viable antimicrobial peptides (AMPs) designs. The present study explores the antimicrobial prospects of Apoptin nuclear localization sequence (NLS2)-derived peptide ANLP (PRPRTAKRRIRL). Further, we examined the utility of the NLS dimerization strategy for improvement in antimicrobial activity and sustained bio-stability of AMPs. Initially, the antimicrobial potential of ANLP using antimicrobial peptide databases was analyzed. Then, ANLP along with its two homodimer variants namely ANLP-K1 and ANLP-K2 were synthesized and evaluated for antimicrobial activity against Escherichia coli and Salmonella. Among three AMPs, ANLP-K2 showed efficient antibacterial activity with 12 µM minimum inhibitory concentration (MIC). Slow degradation of ANLP-K1 (26.48%) and ANLP-K2 (13.21%) compared with linear ANLP (52.33%) at 480 min in serum stability assay indicates improved bio-stability of dimeric peptides. The AMPs presented no cytotoxicity in Vero cells. Dye penetration assays confirmed the membrane interacting nature of AMPs. The zeta potential analysis reveals effective charge neutralization of both lipopolysaccharide (LPS) and bacterial cells by dimeric AMPs. The dimeric AMPs on scanning electron microscopy studies showed multiple pore formations on the bacterial surface. Collectively, proposed Lysine scaffold dimerization of Apoptin NLS2 strategy resulted in enhancing antibacterial activity, bio-stability, and could be effective in neutralizing the off-target effect of LPS. In conclusion, these results suggest that nuclear localization sequence with a modified dimeric approach could represent a rich source of template for designing future antimicrobial peptides.
Collapse
Affiliation(s)
- Anu Kumari
- Department of Animal Biotechnology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences (LUVAS), Hisar, Haryana, 125004, India
| | - Mahavir Singh
- College Central Laboratory, College of Veterinary Sciences, LUVAS, Hisar, Haryana, 125004, India
| | - Ruchi Sharma
- Department of Animal Biotechnology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences (LUVAS), Hisar, Haryana, 125004, India
| | - Tarun Kumar
- Veterinary Clinical Complex, College of Veterinary Sciences, LUVAS, Hisar, Haryana, 125004, India
| | - Naresh Jindal
- Department of Veterinary Public Health and Epidemiology, College of Veterinary Sciences, LUVAS, Hisar, Haryana, 125004, India
| | - Sushila Maan
- Department of Animal Biotechnology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences (LUVAS), Hisar, Haryana, 125004, India
| | - Vinay G Joshi
- Department of Animal Biotechnology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences (LUVAS), Hisar, Haryana, 125004, India.
| |
Collapse
|
2
|
Ioannou P, Baliou S, Kofteridis DP. Antimicrobial Peptides in Infectious Diseases and Beyond-A Narrative Review. Life (Basel) 2023; 13:1651. [PMID: 37629508 PMCID: PMC10455936 DOI: 10.3390/life13081651] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Despite recent medical research and clinical practice developments, the development of antimicrobial resistance (AMR) significantly limits therapeutics for infectious diseases. Thus, novel treatments for infectious diseases, especially in this era of increasing AMR, are urgently needed. There is ongoing research on non-classical therapies for infectious diseases utilizing alternative antimicrobial mechanisms to fight pathogens, such as bacteriophages or antimicrobial peptides (AMPs). AMPs are evolutionarily conserved molecules naturally produced by several organisms, such as plants, insects, marine organisms, and mammals, aiming to protect the host by fighting pathogenic microorganisms. There is ongoing research regarding developing AMPs for clinical use in infectious diseases. Moreover, AMPs have several other non-medical applications in the food industry, such as preservatives, animal husbandry, plant protection, and aquaculture. This review focuses on AMPs, their origins, biology, structure, mechanisms of action, non-medical applications, and clinical applications in infectious diseases.
Collapse
Affiliation(s)
- Petros Ioannou
- School of Medicine, University of Crete, 71003 Heraklion, Greece
- Internal Medicine, University Hospital of Heraklion, 71110 Heraklion, Greece
| | - Stella Baliou
- Internal Medicine, University Hospital of Heraklion, 71110 Heraklion, Greece
| | - Diamantis P. Kofteridis
- School of Medicine, University of Crete, 71003 Heraklion, Greece
- Internal Medicine, University Hospital of Heraklion, 71110 Heraklion, Greece
| |
Collapse
|
3
|
Bischetti M, Alaimo N, Nardelli F, Punzi P, Amariei C, Ingenito R, Musco G, Gallo M, Cicero DO. Structural insights on the selective interaction of the histidine-rich piscidin antimicrobial peptide Of-Pis1 with membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184080. [PMID: 36328080 DOI: 10.1016/j.bbamem.2022.184080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/26/2022] [Accepted: 10/20/2022] [Indexed: 11/08/2022]
Abstract
Of-Pis1 is a potent piscidin antimicrobial peptide (AMP), recently isolated from rock bream (Oplegnathus fasciatus). This rich in histidines and glycines 24-amino acid peptide displays high and broad antimicrobial activity and no significant hemolytic toxicity against human erythrocytes, suggesting low toxicity. To better understand the mechanism of action of Of-Pis1 and its potential selectivity, using NMR and CD spectroscopies, we studied the interaction with eukaryotic and procaryotic membranes and membrane models. Anionic sodium dodecyl sulfate (SDS) and lipopolysaccharide (LPS) micelles were used to mimic procaryotic membranes, while zwitterionic dodecyl phosphocholine (DPC) was used as eukaryotic membrane surrogate. In an aqueous environment, Of-Pis1 adopts a flexible random coil conformation. In DPC and SDS instead, the N-terminal region of Of-Pis1 forms an amphipathic α-helix with the non-polar face in close contact with the micelles. Slower solvent exchange and higher pKas of the histidine residues in SDS than in DPC suggest that Of-Pis1 interacts more tightly with SDS. Of-Pis1 also binds tightly and structurally perturbs LPS micelles. Of-Pis1 interacts with both Escherichia coli and mammalian cell membranes, but only in the presence of Escherichia coli membranes it populates the helical conformation. Furthermore, ligand-based NMR experiments support a tighter and more specific interaction with bacterial than with eukaryotic membranes. Overall, these data clearly show the selective interaction of this broadly active AMP with bacterial over eukaryotic membranes. The conformational information is discussed in terms of Of-Pis1 amino acid sequence and composition to provide insights useful to design more potent and selective AMPs.
Collapse
Affiliation(s)
- Martina Bischetti
- Department of Chemical Science and Technology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Nadine Alaimo
- Structural Biology and Computational Chemistry, IRBM SpA, Via Pontina Km 30 600, 00 071 Pomezia, Rome, Italy
| | - Francesca Nardelli
- Biomolecular NMR Laboratory, I.R.C.C.S. Ospedale San Raffaele, Via Olgettina 58, 20132 Milan, Italy
| | - Pasqualina Punzi
- Peptides Chemistry Unit, IRBM SpA, Via Pontina Km 30 600, 00 071 Pomezia, Rome, Italy
| | - Cristi Amariei
- Department of Chemical Science and Technology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Raffaele Ingenito
- Peptides Chemistry Unit, IRBM SpA, Via Pontina Km 30 600, 00 071 Pomezia, Rome, Italy
| | - Giovana Musco
- Biomolecular NMR Laboratory, I.R.C.C.S. Ospedale San Raffaele, Via Olgettina 58, 20132 Milan, Italy
| | - Mariana Gallo
- Structural Biology and Computational Chemistry, IRBM SpA, Via Pontina Km 30 600, 00 071 Pomezia, Rome, Italy.
| | - Daniel Oscar Cicero
- Department of Chemical Science and Technology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy
| |
Collapse
|
4
|
Review Marine Pharmacology in 2018: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis and Antiviral Activities; Affecting the Immune and Nervous Systems, and other Miscellaneous Mechanisms of Action. Pharmacol Res 2022; 183:106391. [DOI: 10.1016/j.phrs.2022.106391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/18/2022]
|
5
|
Al-Khayri JM, Asghar W, Khan S, Akhtar A, Ayub H, Khalid N, Alessa FM, Al-Mssallem MQ, Rezk AAS, Shehata WF. Therapeutic Potential of Marine Bioactive Peptides against Human Immunodeficiency Virus: Recent Evidence, Challenges, and Future Trends. Mar Drugs 2022; 20:md20080477. [PMID: 35892945 PMCID: PMC9394390 DOI: 10.3390/md20080477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 02/04/2023] Open
Abstract
Acquired immunodeficiency syndrome (AIDS) is a chronic and potentially fatal ailment caused by the human immunodeficiency virus (HIV) and remains a major health problem worldwide. In recent years, the research focus has shifted to a greater emphasis on complementing treatment regimens involving conventional antiretroviral (ARV) drug therapies with novel lead structures isolated from various marine organisms that have the potential to be utilized as therapeutics for the management of HIV-AIDS. The present review summarizes the recent developments regarding bioactive peptides sourced from various marine organisms. This includes a discussion encompassing the potential of these novel marine bioactive peptides with regard to antiretroviral activities against HIV, preparation, purification, and processing techniques, in addition to insight into the future trends with an emphasis on the potential of exploration and evaluation of novel peptides to be developed into effective antiretroviral drugs.
Collapse
Affiliation(s)
- Jameel Mohammed Al-Khayri
- Department of Plant Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.A.-S.R.); (W.F.S.)
- Correspondence: (J.M.A.-K.); (N.K.)
| | - Waqas Asghar
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore 54770, Pakistan; (W.A.); (S.K.); (A.A.); (H.A.)
| | - Sipper Khan
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore 54770, Pakistan; (W.A.); (S.K.); (A.A.); (H.A.)
| | - Aqsa Akhtar
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore 54770, Pakistan; (W.A.); (S.K.); (A.A.); (H.A.)
| | - Haris Ayub
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore 54770, Pakistan; (W.A.); (S.K.); (A.A.); (H.A.)
| | - Nauman Khalid
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore 54770, Pakistan; (W.A.); (S.K.); (A.A.); (H.A.)
- Correspondence: (J.M.A.-K.); (N.K.)
| | - Fatima Mohammed Alessa
- Department of Food Science and Nutrition, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (F.M.A.); (M.Q.A.-M.)
| | - Muneera Qassim Al-Mssallem
- Department of Food Science and Nutrition, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (F.M.A.); (M.Q.A.-M.)
| | - Adel Abdel-Sabour Rezk
- Department of Plant Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.A.-S.R.); (W.F.S.)
| | - Wael Fathi Shehata
- Department of Plant Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.A.-S.R.); (W.F.S.)
| |
Collapse
|
6
|
Kang L, Han T, Cong H, Yu B, Shen Y. Recent research progress of biologically active peptides. Biofactors 2022; 48:575-596. [PMID: 35080058 DOI: 10.1002/biof.1822] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/04/2022] [Indexed: 11/11/2022]
Abstract
With the rapid development of molecular biology and biochemical technology, great progress has been made in the study of peptides. Peptides are easy to digest and absorb, with lowering of blood pressure and cholesterol, improving immunity, regulating hormones, antibacterial, and antiviral effects. Peptides also have physiological regulation and biological metabolism functions with applications in the fields of feed production and biomedical research. In the future, the research focus of bioactive peptides will focus on their efficient preparation and application. This article introduces a comprehensive review of the types, synthesis, functionalization, and bio-related applications of bioactive peptides. For this aim, we introduced in detail various biopeptides and then presented the production methods of bioactive peptides, such as enzymatic synthesis, microbial fermentation, chemical synthesis, and others. The applications of bioactive peptides for anticancers, immune therapy, antibacterial, and other applications have been introduced and discussed. And discussed the development prospects of biologically active peptides.
Collapse
Affiliation(s)
- Linlin Kang
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, China
| | - Tingting Han
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Wei X, Zhang L, Zhang R, Wu R, Si D, Ahmad B, Petitte JN, Mozdziak PE, Li Z, Guo H, Zhang M. A highly efficient hybrid peptide ameliorates intestinal inflammation and mucosal barrier damage by neutralizing lipopolysaccharides and antagonizing the lipopolysaccharide-receptor interaction. FASEB J 2020; 34:16049-16072. [PMID: 33058296 DOI: 10.1096/fj.201903263rrr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022]
Abstract
Intestinal inflammatory disorders, such as inflammatory bowel disease, are major contributors to mortality and morbidity in humans and animals worldwide. While some native peptides have great potential as therapeutic agents against intestinal inflammation, potential cytotoxicity, anti-inciting action, and suppression of anti-inflammatory activity may limit their development as anti-inflammatory agents. Peptide hybridization is an effective approach for the design and engineering of novel functional peptides because hybrid peptides combine the advantages and benefits of various native peptides. In the present study, a novel hybrid anti-inflammatory peptide that combines the active center of Cecropin A (C) and the core functional region of LL-37 (L) was designed [C-L peptide; C (1-8)-L (17-30)] through in silico analysis to reduce cytotoxicity and improve the anti-inflammatory activity of the parental peptides. The resulting C-L peptide exhibited lower cytotoxicity than either C or L peptides alone. C-L also exerted a protective effect against lipopolysaccharide (LPS)-induced inflammatory responses in RAW264.7 macrophages and in the intestines of a mouse model. The hybrid peptide exhibited increased anti-inflammatory activity compared to the parental peptides. C-L plays a role in protecting intestinal tissue from damage, LPS-induced weight loss, and leukocyte infiltration. In addition, C-L reduces the expression levels of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), IL-1β, and interferon-gamma (IFN-γ), as well as reduces cell apoptosis. It also reduced mucosal barrier damage caused by LPS. The anti-inflammatory effects of the hybrid peptide were mainly attributed to its LPS-neutralizing activity and antagonizing the activation of LPS-induced Toll-like receptor 4-myeloid differentiation factor 2 (TLR4/MD2). The peptide also affected the TLR4-(nuclear factor κB) signaling pathway, modulating the inflammatory response upon LPS stimulation. Collectively, these findings suggest that the newly designed peptide, C-L, could be developed into a novel anti-inflammatory agent for animals or humans.
Collapse
Affiliation(s)
- Xubiao Wei
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lulu Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Rijun Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Rujuan Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dayong Si
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Baseer Ahmad
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - James N Petitte
- College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, USA
| | - Paul E Mozdziak
- College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, USA
| | - Zhongxuan Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Henan Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Manyi Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Krishnakumari V, Binny TM, Adicherla H, Nagaraj R. Escherichia coli Lipopolysaccharide Modulates Biological Activities of Human-β-Defensin Analogues but Not Non-Ribosomally Synthesized Peptides. ACS OMEGA 2020; 5:6366-6375. [PMID: 32258871 PMCID: PMC7114172 DOI: 10.1021/acsomega.9b03770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/04/2020] [Indexed: 06/11/2023]
Abstract
Human-β-defensins (HBD1-3) are antibacterial peptides containing three disulphide bonds. In the present study, the effect of Escherichia coli lipopolysaccharide (LPS) on the antibacterial activities of HBD2-3, C-terminal analogues having a single disulphide bond, Phd1-3, and their corresponding myristoylated analogues MPhd1-3 were investigated. The effect of LPS on the activities of linear amphipathic peptides melittin, LL37 and non-ribosomally synthesized peptides, polymyxin B, alamethicin, gramicidin A, and gramicidin S was also examined. The antibacterial activity of HBD 2-3, Phd1-3, and MPhd1-3 in the presence of LPS against E. coli and Staphylococcus aureus was inhibited. While LPS inhibited the antibacterial activity of LL37, the inhibition of melittin activity was partial. The hemolytic activity exhibited by MPhd1, MPhd3, melittin, and LL37 was inhibited in the presence of LPS. HBD2-3, Phd1-3, and MPhd1-3 also showed endotoxin neutralizing activity. The antibacterial and hemolytic activities of polymyxin B, alamethicin, gramicidin A, and gramicidin S were not inhibited in the presence of LPS. Fluorescence assays employing dansyl cadaverine showed that HBD2-3 and defensin analogues bind to LPS more strongly as compared to alamethicin, gramicidin A, and gramicidin S. Electron microscopy images indicated that peptides disintegrate the structure of LPS. The inhibition of the antibacterial activity of native defensins and analogues in the presence of LPS indicates that the initial interaction with the bacterial surface is similar. The native defensin sequence or structure is also not essential, although cationic charges are necessary for binding to LPS. Hydrophobic interaction is the main driving force for association of non-ribosomally synthesized polymyxin B, alamethicin, gramicidin A, and gramicidin S with LPS. It is likely that these peptides rapidly insert into membranes and do not interact with the bacterial cell surface, whereas cationic peptides such as β-defensin and their analogues, melittin and LL37, first interact with the bacterial cell surface and then the membrane. Our results suggest that evaluating interaction of antibacterial and hemolytic peptides with LPS is a compelling way of elucidating the mechanism of bacterial killing or hemolysis.
Collapse
|
9
|
Dong N, Wang C, Li X, Guo Y, Li X. Simplified Head-to-Tail Cyclic Polypeptides as Biomaterial-Associated Antimicrobials with Endotoxin Neutralizing and Anti-Inflammatory Capabilities. Int J Mol Sci 2019; 20:ijms20235904. [PMID: 31775224 PMCID: PMC6928678 DOI: 10.3390/ijms20235904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/15/2019] [Accepted: 11/20/2019] [Indexed: 12/21/2022] Open
Abstract
The therapeutic application of antimicrobial peptides (AMPs), a potential type of peptide-based biomaterial, is impeded by their poor antimicrobial activity and potential cytotoxicity as a lack of understanding of their structure–activity relationships. In order to comprehensively enhance the antibacterial and clinical application potency of AMPs, a rational approach was applied to design amphiphilic peptides, including head-to-tail cyclic, linear and D-proline antimicrobial peptides using the template (IR)nP(IR)nP (n = 1, 2 and 3). Results showed that these amphiphilic peptides demonstrated antimicrobial activity in a size-dependent manner and that cyclic peptide OIR3, which contained three repeating units (IR)3, had greater antimicrobial potency and cell selectivity than liner peptide IR3, DIR3 with D-Pro and gramicidin S (GS). Surface plasmon resonance and endotoxin neutralization assays indicated that OIR3 had significant endotoxin neutralization capabilities, which suggested that the effects of OIR3 were mediated by binding to lipopolysaccharides (LPS). Using fluorescence spectrometry and electron microscopy, we found that OIR3 strongly promoted membrane disruption and thereby induced cell lysis. In addition, an LPS-induced inflammation assay showed that OIR3 inhibited the pro-inflammatory factor TNF-α in RAW264.7 cells. OIR3 was able to reduce oxazolone-induced skin inflammation in allergic dermatitis mouse model via the inhibition of TNF-α, IL-1β and IL-6 mRNA expression. Collectively, the engineered head-to-tail cyclic peptide OIR3 was considerable potential candidate for use as a clinical therapeutic for the treatment of bacterial infections and skin inflammation.
Collapse
Affiliation(s)
- Na Dong
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China; (N.D.); (C.W.); (X.L.)
| | - Chensi Wang
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China; (N.D.); (C.W.); (X.L.)
| | - Xinran Li
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China; (N.D.); (C.W.); (X.L.)
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Correspondence: ; Tel.: +(86-010)-6273-3900
| | - Xiaoli Li
- Heilongjiang Key Laboratory of Molecular Design and Preparation of Flame Retarded Materials, College of Science, Northeast Forestry University, Harbin 150040, China;
| |
Collapse
|
10
|
Mwangi J, Hao X, Lai R, Zhang ZY. Antimicrobial peptides: new hope in the war against multidrug resistance. Zool Res 2019; 40:488-505. [PMID: 31592585 PMCID: PMC6822926 DOI: 10.24272/j.issn.2095-8137.2019.062] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/26/2019] [Indexed: 12/16/2022] Open
Abstract
The discovery of antibiotics marked a golden age in the revolution of human medicine. However, decades later, bacterial infections remain a global healthcare threat, and a return to the pre-antibiotic era seems inevitable if stringent measures are not adopted to curb the rapid emergence and spread of multidrug resistance and the indiscriminate use of antibiotics. In hospital settings, multidrug resistant (MDR) pathogens, including carbapenem-resistant Pseudomonas aeruginosa, vancomycin-resistant enterococci (VRE), methicillin-resistant Staphylococcus aureus (MRSA), and extended-spectrum β-lactamases (ESBL) bearing Acinetobacter baumannii, Escherichia coli, and Klebsiella pneumoniae are amongst the most problematic due to the paucity of treatment options, increased hospital stay, and exorbitant medical costs. Antimicrobial peptides (AMPs) provide an excellent potential strategy for combating these threats. Compared to empirical antibiotics, they show low tendency to select for resistance, rapid killing action, broad-spectrum activity, and extraordinary clinical efficacy against several MDR strains. Therefore, this review highlights multidrug resistance among nosocomial bacterial pathogens and its implications and reiterates the importance of AMPs as next-generation antibiotics for combating MDR superbugs.
Collapse
Affiliation(s)
- James Mwangi
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming Yunnan 650204, China
- Sino-African Joint Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
| | - Xue Hao
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
| | - Ren Lai
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
- Sino-African Joint Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
- Institutes for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan Hubei 430071, China
| | - Zhi-Ye Zhang
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China, E-mail:
| |
Collapse
|
11
|
Dong N, Wang C, Zhang T, Zhang L, Xue C, Feng X, Bi C, Shan A. Bioactivity and Bactericidal Mechanism of Histidine-Rich β-Hairpin Peptide Against Gram-Negative Bacteria. Int J Mol Sci 2019; 20:ijms20163954. [PMID: 31416220 PMCID: PMC6718988 DOI: 10.3390/ijms20163954] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/06/2019] [Accepted: 08/13/2019] [Indexed: 02/07/2023] Open
Abstract
Antibacterial peptides (APMs) are a new type of antibacterial substance. The relationship between their structure and function remains indistinct; in particular, there is a lack of a definitive and fixed template for designing new antimicrobial peptides. Previous studies have shown that porcine Protegrin-1 (PG-1) exhibits considerable antimicrobial activity and cytotoxicity. In this study, to reduce cytotoxicity and increase cell selectivity, we designed histidine-rich peptides based on the sequence template RR(XY)2XDPGX(YX)2RR-NH2, where X represents I, W, V, and F. The results showed that the peptides form more β-hairpin structures in a lipid-rich environment that mimics cell membranes. Among them, the antimicrobial peptide HV2 showed strong antibacterial activity against Gram-negative strains and almost no toxicity to normal cells. The results of our analysis of its antibacterial mechanism showed that peptide HV2 acts on the bacterial cell membrane to increase its permeability, resulting in cell membrane disruption and death. Furthermore, peptide HV2 inhibited bacterial movement in a concentration-dependent manner and had a more robust anti-inflammatory effect by inhibiting the production of TNF-α. In summary, peptide HV2 exhibits high bactericidal activity and cell selectivity, making it a promising candidate for future use as an antibiotic.
Collapse
Affiliation(s)
- Na Dong
- Laboratory of Molecular Nutrition and Immunity. The Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Chensi Wang
- Laboratory of Molecular Nutrition and Immunity. The Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Tingting Zhang
- Laboratory of Molecular Nutrition and Immunity. The Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Lei Zhang
- Laboratory of Molecular Nutrition and Immunity. The Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Chenyu Xue
- Laboratory of Molecular Nutrition and Immunity. The Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Xinjun Feng
- Laboratory of Molecular Nutrition and Immunity. The Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Chongpeng Bi
- Laboratory of Molecular Nutrition and Immunity. The Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Anshan Shan
- Laboratory of Molecular Nutrition and Immunity. The Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
12
|
The Biotechnological Potential of Secondary Metabolites from Marine Bacteria. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2019. [DOI: 10.3390/jmse7060176] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Marine habitats are a rich source of molecules of biological interest. In particular, marine bacteria attract attention with their ability to synthesize structurally diverse classes of bioactive secondary metabolites with high biotechnological potential. The last decades were marked by numerous discoveries of biomolecules of bacterial symbionts, which have long been considered metabolites of marine animals. Many compounds isolated from marine bacteria are unique in their structure and biological activity. Their study has made a significant contribution to the discovery and production of new natural antimicrobial agents. Identifying the mechanisms and potential of this type of metabolite production in marine bacteria has become one of the noteworthy trends in modern biotechnology. This path has become not only one of the most promising approaches to the development of new antibiotics, but also a potential target for controlling the viability of pathogenic bacteria.
Collapse
|
13
|
Zhang AH, Edwards IA, Mishra BP, Sharma G, Healy MD, Elliott AG, Blaskovich MAT, Cooper MA, Collins BM, Jia X, Mobli M. Elucidating the Lipid Binding Properties of Membrane-Active Peptides Using Cyclised Nanodiscs. Front Chem 2019; 7:238. [PMID: 31058133 PMCID: PMC6477933 DOI: 10.3389/fchem.2019.00238] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/26/2019] [Indexed: 01/02/2023] Open
Abstract
The lipid composition of the cellular membrane plays an important role in a number of biological processes including the binding of membrane-active peptides. Characterization of membrane binding remains challenging, due to the technical limitations associated with the use of standard biophysical techniques and available membrane models. Here, we investigate the lipid binding properties of two membrane-active peptides, VSTx1, a well characterized ion-channel inhibitor, identified from spider venom, that preferentially binds to anionic lipid mixtures, and AA139 an antimicrobial β-hairpin peptide with uncharacterised lipid binding properties, currently in pre-clinical development. The lipid binding properties of these peptides are elucidated using nanodiscs formed by both linear and circularized (sortase-mediated) forms of a membrane scaffold protein (MSP1D1ΔH5). We find that nanodiscs formed by circularized MSPs—in contrast to those formed by linear MSPs—are sufficiently stable under sample conditions typically used for biophysical measurements (including lipid composition, a range of buffers, temperatures and concentrations). Using these circularized nanodiscs, we are able to extract detailed thermodynamic data using isothermal titration calorimetry (ITC) as well as atomic resolution mapping of the lipid binding interfaces of our isotope labeled peptides using solution-state, heteronuclear, nuclear magnetic resonance (NMR) spectroscopy. This represents a novel and general approach for elucidating the thermodynamics and molecular interface of membrane-active peptides toward flat lipid bilayers of variable composition. Our approach is validated by first determining the thermodynamic parameters and binding interface of VSTx1 toward the lipid bilayer, which shows good agreement with previous studies using lipid micelles and liposomes. The method is then applied to AA139, where the membrane binding properties are unknown. This characterization, involved solving the high-resolution structure of AA139 in solution using NMR spectroscopy and the development of a suitable expression system for isotope labeling. AA139 was found to bind exclusively to anionic membranes with moderate affinity (Kd~low μM), and was found to have a lipid binding interface involving the termini of the β-hairpin structure. The preference of AA139 for anionic lipids supports a role for membrane binding in the mode-of-action of this peptide, which is also consistent with its higher inhibitory activity against bacterial cells compared to mammalian cells. The described approach is a powerful method for investigation of the membrane binding properties of this important class of molecules.
Collapse
Affiliation(s)
- Alan H Zhang
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Ingrid A Edwards
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Biswa P Mishra
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Gagan Sharma
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Michael D Healy
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Alysha G Elliott
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Mark A T Blaskovich
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Matthew A Cooper
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Brett M Collins
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Xinying Jia
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Mehdi Mobli
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|