1
|
Migaou M, Macé S, Maalej H, Marchand L, Bonnetot S, Noël C, Sinquin C, Jérôme M, Zykwinska A, Colliec-Jouault S, Maaroufi RM, Delbarre-Ladrat C. Exploring the Exopolysaccharide Production Potential of Bacterial Strains Isolated from Tunisian Blue Crab Portunus segnis Microbiota. Molecules 2024; 29:774. [PMID: 38398526 PMCID: PMC10893132 DOI: 10.3390/molecules29040774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
The blue crab (BC) Portunus segnis is considered an invasive species colonizing Tunisian coasts since 2014. This work aims to explore its associated bacteria potential to produce anionic exopolysaccharides (EPSs) in order to open up new ways of valorization. In this study, different BC samples were collected from the coastal area of Sfax, Tunisia. First, bacterial DNA was extracted from seven different fractions (flesh, gills, viscera, carapace scraping water, and three wastewaters from the production plant) and then sequenced using the metabarcoding approach targeting the V3-V4 region of the 16S rDNA to describe their microbiota composition. Metabarcoding data showed that the dominant bacterial genera were mainly Psychrobacter, Vagococcus, and Vibrio. In parallel, plate counting assays were performed on different culture media, and about 250 bacterial strains were isolated and identified by sequencing the 16S rDNA. EPS production by this new bacterial diversity was assessed to identify new compounds of biotechnological interest. The identification of the bacterial strains in the collection confirmed the dominance of Psychrobacter spp. strains. Among them, 43 were identified as EPS producers, as revealed by Stains-all dye in agarose gel electrophoresis. A Buttiauxella strain produced an EPS rich in both neutral sugars including rare sugars such as rhamnose and fucose and uronic acids. This original composition allows us to assume its potential for biotechnological applications and, more particularly, for developing innovative therapeutics. This study highlights bacterial strains associated with BC; they are a new untapped source for discovering innovative bioactive compounds for health and cosmetic applications, such as anionic EPS.
Collapse
Affiliation(s)
- Mariem Migaou
- Laboratory of Genetics, Biodiversity & Valorisation of Bioresources, Higher Institute of Biotechnology of Monastir, University of Monastir, Ave Tahar Haddad, BP74, Monastir 5000, Tunisia
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France
| | - Sabrina Macé
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France
| | - Hana Maalej
- Laboratory of Biodiversity and Valorization of Arid Areas Bioresources, Faculty of Sciences, University of Gabès, Erriadh, Zrig, Gabès 6072, Tunisia
| | - Laetitia Marchand
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France
| | - Sandrine Bonnetot
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France
| | - Cyril Noël
- Ifremer, IRSI, SeBiMER Service de Bioinformatique de l'Ifremer, F-29280 Plouzané, France
| | - Corinne Sinquin
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France
| | - Marc Jérôme
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France
| | - Agata Zykwinska
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France
| | | | - Raoui Mounir Maaroufi
- Laboratory of Genetics, Biodiversity & Valorisation of Bioresources, Higher Institute of Biotechnology of Monastir, University of Monastir, Ave Tahar Haddad, BP74, Monastir 5000, Tunisia
| | | |
Collapse
|
2
|
Benhadda F, Zykwinska A, Colliec-Jouault S, Sinquin C, Thollas B, Courtois A, Fuzzati N, Toribio A, Delbarre-Ladrat C. Marine versus Non-Marine Bacterial Exopolysaccharides and Their Skincare Applications. Mar Drugs 2023; 21:582. [PMID: 37999406 PMCID: PMC10672628 DOI: 10.3390/md21110582] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/02/2023] [Accepted: 11/05/2023] [Indexed: 11/25/2023] Open
Abstract
Bacteria are well-known to synthesize high molecular weight polysaccharides excreted in extracellular domain, which constitute their protective microenvironment. Several bacterial exopolysaccharides (EPS) are commercially available for skincare applications in cosmetic products due to their unique structural features, conferring valuable biological and/or textural properties. This review aims to give an overview of bacterial EPS, an important group of macromolecules used in cosmetics as actives and functional ingredients. For this purpose, the main chemical characteristics of EPS are firstly described, followed by the basics of the development of cosmetic ingredients. Then, a focus on EPS production, including upstream and downstream processes, is provided. The diversity of EPS used in the cosmetic industry, and more specifically of marine-derived EPS is highlighted. Marine bacteria isolated from extreme environments are known to produce EPS. However, their production processes are highly challenging due to high or low temperatures; yield must be improved to reach economically viable ingredients. The biological properties of marine-derived EPS are then reviewed, resulting in the highlight of the challenges in this field.
Collapse
Affiliation(s)
- Fanny Benhadda
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France; (F.B.); (S.C.-J.); (C.S.); (C.D.-L.)
- CHANEL Fragrance and Beauty, F-93500 Pantin, France; (N.F.); (A.T.)
| | - Agata Zykwinska
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France; (F.B.); (S.C.-J.); (C.S.); (C.D.-L.)
| | - Sylvia Colliec-Jouault
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France; (F.B.); (S.C.-J.); (C.S.); (C.D.-L.)
| | - Corinne Sinquin
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France; (F.B.); (S.C.-J.); (C.S.); (C.D.-L.)
| | | | | | - Nicola Fuzzati
- CHANEL Fragrance and Beauty, F-93500 Pantin, France; (N.F.); (A.T.)
| | - Alix Toribio
- CHANEL Fragrance and Beauty, F-93500 Pantin, France; (N.F.); (A.T.)
| | - Christine Delbarre-Ladrat
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France; (F.B.); (S.C.-J.); (C.S.); (C.D.-L.)
| |
Collapse
|
3
|
Srivastava RK, Bothra N, Singh R, Sai MC, Nedungadi SV, Sarangi PK. Microbial originated surfactants with multiple applications: a comprehensive review. Arch Microbiol 2022; 204:452. [PMID: 35786779 DOI: 10.1007/s00203-022-03086-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 06/09/2022] [Accepted: 06/16/2022] [Indexed: 11/02/2022]
Abstract
Microbial synthesized surfactants are used in contaminated soil bioremediation processes and have multiple applications in various industries. These compounds minimize the negative influences in soil via absorption by detoxifying the toxic metals or compounds. Further, applications of biosurfactants are detected in treating chronic diseases or synthetic drugs alternatives in current periods. Various surfactant molecules can provide many benefits due to their diversities in structural and functional groups. These compounds showed a wide array of applications in multiple sectors such as biomedical or pharmaceutical fields. Agricultural, food processing, laundry, or other sectors. Many microbial systems or plant cells are utilized in biosurfactant production as confirmed by biochemical analysis of genome sequencing tools. Biosurfactant compounds can alter drug transport across the cell membrane. Different nature of biosurfactant compounds exhibited their antifungal, antibacterial, antiviral activities, or antiadhesive coating agents used in reduction of many hospital infections. These distinct properties of biosurfactants pushed their broad spectrum applications in biomedical, agriculture sectors and bioremediation tasks. Additionally, many strains of fungi or bacteria are utilized for biosurfactant synthesis involved in the detoxification of soil/other components of the environment. In these reviews, authors explained various biosurfactants molecules and their mode of actions. Also, applications of microbial originated biosurfactants along with their process technologies are described. Future perspectives of biosurfactants and their scope are also critically explained so that this review paper can be used as a showcase for production and application of biosurfactants.
Collapse
Affiliation(s)
- Rajesh Kumar Srivastava
- Department of Biotechnology, GITAM. (Deemed to Be University, GITAM School of Technology, Visakhapatnam, 530045, Andhra Pradesh, India.
| | - Neha Bothra
- Department of Biotechnology, GITAM. (Deemed to Be University, GITAM School of Technology, Visakhapatnam, 530045, Andhra Pradesh, India
| | - Rimjhim Singh
- Department of Biotechnology, GITAM. (Deemed to Be University, GITAM School of Technology, Visakhapatnam, 530045, Andhra Pradesh, India
| | - M Chaitanya Sai
- Department of Biotechnology, GITAM. (Deemed to Be University, GITAM School of Technology, Visakhapatnam, 530045, Andhra Pradesh, India
| | - Sruthy Vineed Nedungadi
- Department of Biotechnology, GITAM. (Deemed to Be University, GITAM School of Technology, Visakhapatnam, 530045, Andhra Pradesh, India
| | | |
Collapse
|
4
|
Srivastava N, Kumari S, Kurmi S, Pinnaka AK, Choudhury AR. Isolation, purification, and characterization of a novel exopolysaccharide isolated from marine bacteria Brevibacillus borstelensis M42. Arch Microbiol 2022; 204:399. [PMID: 35713724 DOI: 10.1007/s00203-022-02993-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/17/2022] [Indexed: 11/02/2022]
Abstract
Marine microbes produce polysaccharides with unique physicochemical and functional properties that help them survive in harsh marine environments. However, only a handful of marine exopolysaccharides (EPSs) have been reported to date. The present study explored the seashore of Visakhapatnam, India, to report a novel exopolysaccharide designated as Br42 produced by Brevibacillus borstelensis M42. The isolate was identified through morphological, biochemical, phylogenetic, and genome sequencing analysis. The studies on fermentation kinetics revealed that EPS Br42 was a primary metabolite with a maximum production of 1.88 ± 0.02 g/L after 60 h when production broth was fortified with 2% glucose. Additionally, EPS Br42 was found to be a heteropolysaccharide consisting of glucose and galacturonic acid with a molecular weight of about 286 kDa. Interestingly, this molecule possesses industrially relevant functional properties such as water-holding (510 ± 0.35%), oil-holding (374 ± 0.12% for coconut oil and 384 ± 0.35% for olive oil), and swelling capacities (146.6 ± 5.75%). EPS Br42 could form an emulsion that was stable at a wide pH range for about 72 h and, in fact, performed better as compared to Span 20, a commercially used synthetic emulsifier. Moreover, this EPS was also found to be heat stable and exhibited non-Newtonian pseudoplastic behavior. These physicochemical and functional properties of polysaccharides suggest that the EPS Br42 has potential for multifarious industrial applications as an emulsifier, stabilizer, viscosifier, and binding agent.
Collapse
Affiliation(s)
- Nandita Srivastava
- Biochemical Engineering Research and Process Development Centre (BERPDC), Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh, 160036, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sumeeta Kumari
- Microbial Type Culture Collection and Gene Bank (MTCC), Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh, 160036, India
| | - Shubham Kurmi
- Biochemical Engineering Research and Process Development Centre (BERPDC), Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh, 160036, India
| | - Anil Kumar Pinnaka
- Microbial Type Culture Collection and Gene Bank (MTCC), Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh, 160036, India
| | - Anirban Roy Choudhury
- Biochemical Engineering Research and Process Development Centre (BERPDC), Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh, 160036, India.
| |
Collapse
|
5
|
Roychowdhury R, Srivastava N, Kumari S, Pinnaka AK, Roy Choudhury A. Isolation of an exopolysaccharide from a novel marine bacterium Neorhizobium urealyticum sp. nov. and its utilization in nanoemulsion formation for encapsulation and stabilization of astaxanthin. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Current Trend of Marine Carbohydrate-Containing Compounds with Medicinal Properties. Mar Drugs 2021; 19:md19060331. [PMID: 34200998 PMCID: PMC8229394 DOI: 10.3390/md19060331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 12/20/2022] Open
|
7
|
López-Ortega MA, Chavarría-Hernández N, López-Cuellar MDR, Rodríguez-Hernández AI. A review of extracellular polysaccharides from extreme niches: An emerging natural source for the biotechnology. From the adverse to diverse! Int J Biol Macromol 2021; 177:559-577. [PMID: 33609577 DOI: 10.1016/j.ijbiomac.2021.02.101] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 01/12/2023]
Abstract
Every year, new organisms that survive and colonize adverse environments are discovered and isolated. Those organisms, called extremophiles, are distributed throughout the world, both in aquatic and terrestrial environments, such as sulfurous marsh waters, hydrothermal springs, deep waters, volcanos, terrestrial hot springs, marine saltern, salt lakes, among others. According to the ecosystem inhabiting, extremophiles are categorized as thermophiles, psychrophiles, halophiles, acidophiles, alkalophilic, piezophiles, saccharophiles, metallophiles and polyextremophiles. They have developed chemical adaptation strategies that allow them to maintain their cellular integrity, altering physiology or improving repair capabilities; one of them is the biosynthesis of extracellular polysaccharides (EPS), which constitute a slime and hydrated matrix that keep the cells embedded, protecting from environmental stress (desiccation, salinity, temperature, radiation). EPS have gained interest; they are explored by their unique properties such as structural complexity, biodegradability, biological activities, and biocompatibility. Here, we present a review concerning the biosynthesis, characterization, and potential EPS applications produced by extremophile microorganisms, namely, thermophiles, halophiles, and psychrophiles. A bibliometric analysis was conducted, considering research articles published within the last two decades. Besides, an overview of the culture conditions used for extremophiles, the main properties and multiple potential applications of their EPS is also presented.
Collapse
Affiliation(s)
- Mayra Alejandra López-Ortega
- Cuerpo Académico de Biotecnología Agroalimentaria, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km 1, Exhacienda de Aquetzalpa, Tulancingo de Bravo, Hidalgo C.P. 43600, Mexico.
| | - Norberto Chavarría-Hernández
- Cuerpo Académico de Biotecnología Agroalimentaria, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km 1, Exhacienda de Aquetzalpa, Tulancingo de Bravo, Hidalgo C.P. 43600, Mexico
| | - Ma Del Rocío López-Cuellar
- Cuerpo Académico de Biotecnología Agroalimentaria, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km 1, Exhacienda de Aquetzalpa, Tulancingo de Bravo, Hidalgo C.P. 43600, Mexico
| | - Adriana Inés Rodríguez-Hernández
- Cuerpo Académico de Biotecnología Agroalimentaria, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km 1, Exhacienda de Aquetzalpa, Tulancingo de Bravo, Hidalgo C.P. 43600, Mexico.
| |
Collapse
|
8
|
Structure of the Polysaccharide Secreted by Vibrio alginolyticus CNCM I-5035 (Epidermist 4.0 TM). Mar Drugs 2020; 18:md18100509. [PMID: 33050246 PMCID: PMC7600630 DOI: 10.3390/md18100509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 10/06/2020] [Indexed: 01/27/2023] Open
Abstract
Vibrio alginolyticus (CNCM I-5035) secretes an exopolysaccharide used as ingredient in cosmetic industry under the trademark Epidermist 4.0TM. It is appreciated for its ability to improve the physical and chemical barrier functions of the skin by notably increasing the keratinocyte differentiation and epidermal renewal. Composition analyses and in depth characterization of the polysaccharides as well as oligosaccharides obtained by mild acid hydrolyses revealed that it was composed of a repetition unit of three residues: d-galactose (d-Gal), d-N-acetylglucosamine (GlcNAc) and l-N-acetylguluronic acid, of which 30% (M/M) was acetylated in position 3. The complete structure of the polysaccharide was resolved giving the repetition unit: [→3)-α-d-Gal-(1→4)-α-l-GulNAcA/α-l-3OAc-GulNAcA-(1→4)-β-d-GlcNAc-(1→].
Collapse
|
9
|
Arginine as an environmental and metabolic cue for cyclic diguanylate signalling and biofilm formation in Pseudomonas putida. Sci Rep 2020; 10:13623. [PMID: 32788689 PMCID: PMC7423604 DOI: 10.1038/s41598-020-70675-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/03/2020] [Indexed: 12/21/2022] Open
Abstract
Cyclic diguanylate (c-di-GMP) is a broadly conserved intracellular second messenger that influences different bacterial processes, including virulence, stress tolerance or social behaviours and biofilm development. Although in most cases the environmental cue that initiates the signal transduction cascade leading to changes in cellular c-di-GMP levels remains unknown, certain l- and d-amino acids have been described to modulate c-di-GMP turnover in some bacteria. In this work, we have analysed the influence of l-amino acids on c-di-GMP levels in the plant-beneficial bacterium Pseudomonas putida KT2440, identifying l-arginine as the main one causing a significant increase in c-di-GMP. Both exogenous (environmental) and endogenous (biosynthetic) l-arginine influence biofilm formation by P. putida through changes in c-di-GMP content and altered expression of structural elements of the biofilm extracellular matrix. The contribution of periplasmic binding proteins forming part of amino acid transport systems to the response to environmental l-arginine was also studied. Contrary to what has been described in other bacteria, in P. putida these proteins seem not to be directly responsible for signal transduction. Rather, their contribution to global l-arginine pools appears to determine changes in c-di-GMP turnover. We propose that arginine plays a connecting role between cellular metabolism and c-di-GMP signalling in P. putida.
Collapse
|
10
|
Deep-sea Hydrothermal Vent Bacteria as a Source of Glycosaminoglycan-Mimetic Exopolysaccharides. Molecules 2019; 24:molecules24091703. [PMID: 31052416 PMCID: PMC6539532 DOI: 10.3390/molecules24091703] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 11/21/2022] Open
Abstract
Bacteria have developed a unique strategy to survive in extreme environmental conditions through the synthesis of an extracellular polymeric matrix conferring upon the cells a protective microenvironment. The main structural component of this complex network constitutes high-molecular weight hydrophilic macromolecules, namely exopolysaccharides (EPS). EPS composition with the presence of particular chemical features may closely be related to the specific conditions in which bacteria evolve. Deep-sea hydrothermal vent bacteria have already been shown to produce EPS rich in hexosamines and uronic acids, frequently bearing some sulfate groups. Such a particular composition ensures interesting functional properties, including biological activities mimicking those known for glycosaminoglycans (GAG). The aim of the present study was to go further into the exploration of the deep-sea hydrothermal vent IFREMER (French Research Institute for Exploitation of the Sea) collection of bacteria to discover new strains able to excrete EPS endowed with GAG-like structural features. After the screening of our whole collection containing 692 strains, 38 bacteria have been selected for EPS production at the laboratory scale. EPS-producing strains were identified according to 16S rDNA phylogeny. Chemical characterization of the obtained EPS highlighted their high chemical diversity with the presence of atypical compositional patterns. These EPS constitute potential bioactives for a number of biomedical applications, including regenerative medicines and cancer treatment.
Collapse
|
11
|
Structure and Neuroprotective Effect of Polysaccharide from Viscera Autolysates of Squid Ommastrephes bartrami. Mar Drugs 2019; 17:md17030188. [PMID: 30909471 PMCID: PMC6470927 DOI: 10.3390/md17030188] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/05/2019] [Accepted: 03/15/2019] [Indexed: 01/10/2023] Open
Abstract
To explore bioactive polysaccharides from the byproducts of squid processing, a heteropolysaccharide, named SV2-1, was isolated from the viscera of squid Ommastrephes bartrami by autolysis, anion-exchange and gel-permeation chromatography and measured for its neuroprotective activity. It was a homogeneous polysaccharide with a molecular weight of 2.3 kDa by HPSEC analysis. SV2-1 contained glucuronic acid, galactosamine and fucose in the ratio of 1.0:1.1:1.2. Its structural characteristics were elucidated by methylation analysis, gas chromatography-mass spectrometry (GC-MS), and nuclear magnetic resonance (NMR). The backbone of SV2-1 was composed of alternant →4)-α-l-Fucp-(1→ and →3)-β-d-GlcUA-(1→ Most of →4)-α-l-Fucp-(1→ (90%) was substituted by single α-d-GlcNAc as the branches. SV2-1 can protect against the death of PC12 induced by 6-OHDA, and effectively improves cell viability and reduces extracellular LDH release in PC12 cells after injury. Moreover, SV2-1 significantly increases SOD activity but decreases MDA levels.
Collapse
|