1
|
Tang X, Zhou F, Wang S, Wang G, Bai L, Su J. Bioinspired injectable hydrogels for bone regeneration. J Adv Res 2024:S2090-1232(24)00486-7. [PMID: 39505143 DOI: 10.1016/j.jare.2024.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 09/28/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024] Open
Abstract
The effective regeneration of bone/cartilage defects remains a significant clinical challenge, causing irreversible damage to millions annually.Conventional therapies such as autologous or artificial bone grafting often yield unsatisfactory outcomes, emphasizing the urgent need for innovative treatment methods. Biomaterial-based strategies, including hydrogels and active scaffolds, have shown potential in promoting bone/cartilage regeneration. Among them, injectable hydrogels have garnered substantial attention in recent years on account of their minimal invasiveness, shape adaptation, and controlled spatiotemporal release. This review systematically discusses the synthesis of injectable hydrogels, bioinspired approaches-covering microenvironment, structural, compositional, and bioactive component-inspired strategies-and their applications in various bone/cartilage disease models, highlighting bone/cartilage regeneration from an innovative perspective of bioinspired design. Taken together, bioinspired injectable hydrogels offer promising and feasible solutions for promoting bone/cartilage regeneration, ultimately laying the foundations for clinical applications. Furthermore, insights into further prospective directions for AI in injectable hydrogels screening and organoid construction are provided.
Collapse
Affiliation(s)
- Xuan Tang
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
| | - Fengjin Zhou
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an 710000, China
| | - Sicheng Wang
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China; Department of Orthopedics Trauma, Shanghai Zhongye Hospital, Shanghai 201900, China
| | - Guangchao Wang
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Long Bai
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China; Wenzhou Institute of Shanghai University, Wenzhou 325000, China.
| | - Jiacan Su
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
2
|
Chen B, Liu J. Advancements in Hydrogel-Based Therapies for Ovarian Cancer: A Review. Cell Biochem Biophys 2024:10.1007/s12013-024-01483-7. [PMID: 39190214 DOI: 10.1007/s12013-024-01483-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2024] [Indexed: 08/28/2024]
Abstract
Ovarian cancer, the most deadly gynecologic malignancy, is often resistant to conventional antitumor therapy due to various factors such as severe side effects, unexpected recurrence, and significant tissue damage. The limitations of current treatments and the resistance of invasive tumor cells contribute to these challenges. Hydrogel therapy has recently emerged as a potential treatment option for ovarian cancer, offering advantages such as controllability, biocompatibility, high drug loading capacity, prolonged drug release, and responsiveness to specific stimuli. Hence, the utilization of biodegradable hydrogels as carriers for chemotherapeutic agents has emerged as a significant concern in the field. Injectable hydrogel-based drug delivery systems, in particular, have demonstrated superior efficacy compared to traditional systemic chemotherapy for cancer treatment. The pliability of hydrogel therapy allows for access to anatomical regions that may be challenging for surgical intervention. This review article examines recent advancements in the application of hydrogels for diagnosing and treating ovarian cancer, while also proposing a novel direction for the use of hydrogel technology in this context. The objective of this article is to offer a novel point of reference and serve as a source of inspiration for the advancement of more precise and individualized cancer therapies.
Collapse
Affiliation(s)
- Biqing Chen
- Harbin Medical University, Harbin, Heilongjiang, China.
| | - Jiaqi Liu
- Jilin University, Changchun, Jilin, China
| |
Collapse
|
3
|
Shan BH, Wu FG. Hydrogel-Based Growth Factor Delivery Platforms: Strategies and Recent Advances. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2210707. [PMID: 37009859 DOI: 10.1002/adma.202210707] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/25/2023] [Indexed: 06/19/2023]
Abstract
Growth factors play a crucial role in regulating a broad variety of biological processes and are regarded as powerful therapeutic agents in tissue engineering and regenerative medicine in the past decades. However, their application is limited by their short half-lives and potential side effects in physiological environments. Hydrogels are identified as having the promising potential to prolong the half-lives of growth factors and mitigate their adverse effects by restricting them within the matrix to reduce their rapid proteolysis, burst release, and unwanted diffusion. This review discusses recent progress in the development of growth factor-containing hydrogels for various biomedical applications, including wound healing, brain tissue repair, cartilage and bone regeneration, and spinal cord injury repair. In addition, the review introduces strategies for optimizing growth factor release including affinity-based delivery, carrier-assisted delivery, stimuli-responsive delivery, spatial structure-based delivery, and cellular system-based delivery. Finally, the review presents current limitations and future research directions for growth factor-delivering hydrogels.
Collapse
Affiliation(s)
- Bai-Hui Shan
- State Key Laboratory of Digital Medical Engineering Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| |
Collapse
|
4
|
He W, Deng J, Ma B, Tao K, Zhang Z, Ramakrishna S, Yuan W, Ye T. Recent Advancements of Bioinks for 3D Bioprinting of Human Tissues and Organs. ACS APPLIED BIO MATERIALS 2024; 7:17-43. [PMID: 38091514 DOI: 10.1021/acsabm.3c00806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
3D bioprinting is recognized as a promising biomanufacturing technology that enables the reproducible and high-throughput production of tissues and organs through the deposition of different bioinks. Especially, bioinks based on loaded cells allow for immediate cellularity upon printing, providing opportunities for enhanced cell differentiation for organ manufacturing and regeneration. Thus, extensive applications have been found in the field of tissue engineering. The performance of the bioinks determines the functionality of the entire printed construct throughout the bioprinting process. It is generally expected that bioinks should support the encapsulated cells to achieve their respective cellular functions and withstand normal physiological pressure exerted on the printed constructs. The bioinks should also exhibit a suitable printability for precise deposition of the constructs. These characteristics are essential for the functional development of tissues and organs in bioprinting and are often achieved through the combination of different biomaterials. In this review, we have discussed the cutting-edge outstanding performance of different bioinks for printing various human tissues and organs in recent years. We have also examined the current status of 3D bioprinting and discussed its future prospects in relieving or curing human health problems.
Collapse
Affiliation(s)
- Wen He
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jinjun Deng
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an 710072, China
| | - Binghe Ma
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an 710072, China
| | - Kai Tao
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhi Zhang
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Seeram Ramakrishna
- Centre for Nanofibers and Nanotechnology, National University of Singapore, Singapore 117576, Singapore
| | - Weizheng Yuan
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an 710072, China
| | - Tao Ye
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
5
|
Qi J, Wu H, Liu G. Novel Strategies for Spatiotemporal and Controlled BMP-2 Delivery in Bone Tissue Engineering. Cell Transplant 2024; 33:9636897241276733. [PMID: 39305020 PMCID: PMC11418245 DOI: 10.1177/09636897241276733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 09/25/2024] Open
Abstract
Bone morphogenetic protein-2 (BMP-2) has been commercially approved by the Food and Drug Administration for use in bone defects and diseases. BMP-2 promotes osteogenic differentiation of mesenchymal stem cells. In bone tissue engineering, BMP-2 incorporated into scaffolds can be used for stimulating bone regeneration in organoid construction, drug testing platforms, and bone transplants. However, the high dosage and uncontrollable release rate of BMP-2 challenge its clinical application, mainly due to the short circulation half-life of BMP-2, microbial contamination in bone extracellular matrix hydrogel, and the delivery method. Moreover, in clinical translation, the requirement of high doses of BMP-2 for efficacy poses challenges in cost and safety. Based on these, novel strategies should ensure that BMP-2 is delivered precisely to the desired location within the body, regulating the timing of BMP-2 release to coincide with the bone healing process, as well as release BMP-2 in a controlled manner to optimize its therapeutic effect and minimize side effects. This review highlights improvements in bone tissue engineering applying spatiotemporal and controlled BMP-2 delivery, including molecular engineering, biomaterial modification, and synergistic therapy, aiming to provide references for future research and clinical trials.
Collapse
Affiliation(s)
- Jingqi Qi
- Department of Orthopedics, Third Xiangya Hospital of Central South University, Changsha, China
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Hongwei Wu
- Department of Orthopedics, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Gengyan Liu
- Department of Orthopedics, Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
6
|
Wang K, Gao F, Zhang Y, Dai B, Yan X, He X, Mao D, Rui Y. Comparison of osteogenic activity from different parts of induced membrane in the Masquelet technique. Injury 2023; 54:111022. [PMID: 37713966 DOI: 10.1016/j.injury.2023.111022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/25/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023]
Abstract
BACKGROUND The Masquelet technique is widely used to treat long-bone segmental defects because of its high success rate and low surgical difficulty. However, the cause of the uneven growth of bone grafts following this procedure remains unclear. METHODS Rats were randomly divided into four groups for analysis 2-, 4-, 6- and 8-weeks postoperatively and underwent a uniform surgical procedure to construct a 10 mm bone defect in the right posterior branch of the femur. Induced membrane specimens were harvested at the appropriate time points and divided into segments according to their location. Bone growth activity was assessed by immunohistochemistry, western blotting, and quantitative real-time polymerase chain reaction. RESULTS Mature blood vessels were more densely distributed at the proximal end of the bone defect than at other locations at all time points. The number of blood vessels on the same side of the longitudinal axis of the femur also varied depending on location. The difference between the proximal-anterior and distal-anterior regions within the induced membranes was most pronounced at 6 weeks postoperatively and decreased by 8 weeks postoperatively. The differences between the proximal-posterior and distal-posterior regions within the induced membranes were more pronounced. The expression of the growth factors bone morphogenetic protein-2 (BMP-2), vascular endothelial growth factor A(VEGFA), and transforming growth factor-β1(TGF-β1) in the proximal-posterior regions of the bone defect was almost always higher than that in other regions at the same time point. The expression of BMP-2 in the posterior regions of the bone defect was always higher than that in the anterior regions at the same end of the femoral longitudinal axis. CONCLUSION The number and maturation of vessels in the proximal region of the induced membrane at the bone defect site were higher than those in the distal region, and the expression of growth factors was higher, with the highest induced membrane activity in the proximal-posterior regions of the bone defect. Therefore, there was inhomogeneity in induced membrane activity.
Collapse
Affiliation(s)
- Kai Wang
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215031, China; Department of Orthopedics, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, 214062, China
| | - Fandong Gao
- Department of Orthopedics, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, 214062, China
| | - Yuanshu Zhang
- Department of Orthopedics, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, 214062, China
| | - Beichen Dai
- Department of Orthopedics, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, 214062, China
| | - Xujie Yan
- Department of Orthopedics, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, 214062, China
| | - Xuchen He
- Department of Orthopedics, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, 214062, China
| | - Dong Mao
- Orthopaedic Institute, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, 214062, China.
| | - Yongjun Rui
- Department of Orthopedics, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, 214062, China.
| |
Collapse
|
7
|
Bai X, Cao R, Wu D, Zhang H, Yang F, Wang L. Dental Pulp Stem Cells for Bone Tissue Engineering: A Literature Review. Stem Cells Int 2023; 2023:7357179. [PMID: 37868704 PMCID: PMC10586346 DOI: 10.1155/2023/7357179] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/03/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
Bone tissue engineering (BTE) is a promising approach for repairing and regenerating damaged bone tissue, using stem cells and scaffold structures. Among various stem cell sources, dental pulp stem cells (DPSCs) have emerged as a potential candidate due to their multipotential capabilities, ability to undergo osteogenic differentiation, low immunogenicity, and ease of isolation. This article reviews the biological characteristics of DPSCs, their potential for BTE, and the underlying transcription factors and signaling pathways involved in osteogenic differentiation; it also highlights the application of DPSCs in inducing scaffold tissues for bone regeneration and summarizes animal and clinical studies conducted in this field. This review demonstrates the potential of DPSC-based BTE for effective bone repair and regeneration, with implications for clinical translation.
Collapse
Affiliation(s)
- Xiaolei Bai
- Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310018, Zhejiang, China
| | - Ruijue Cao
- Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310018, Zhejiang, China
| | - Danni Wu
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310018, Zhejiang, China
| | - Huicong Zhang
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310018, Zhejiang, China
| | - Fan Yang
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310018, Zhejiang, China
| | - Linhong Wang
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310018, Zhejiang, China
| |
Collapse
|
8
|
Le TTV, Phan NTH, Tran HLB. Alginate-gelatin hydrogel supplemented with platelet concentrates can be used as bioinks for scaffold printing. ASIAN BIOMED 2023; 17:222-229. [PMID: 37899763 PMCID: PMC10602633 DOI: 10.2478/abm-2023-0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Background Owing to the growing global demand for organ replacement and tissue regeneration, three-dimensional (3D) printing is widely recognized as an essential technology in tissue engineering. Biomaterials become a potential source of raw materials for printing ink by containing factors that promote tissue regeneration. Platelet concentrates are autologous biological products that are capable of doing that. Objectives This study was carried out to create bioinks capable of providing biological signals by combining gelatin-alginate with platelet concentrates. Methods This study combined platelet concentrates, including platelet-rich plasma (PRP) and platelet-rich fibrin (PRF), with gelatin and alginate to create bioinks. Bioink properties, including gelatinization and pH, were assessed before printing. After that, the scaffolds were done, and the growth factor (GF) release and cytotoxicity from these scaffolds were performed. Results Results showed that all the three bioinks, including alginate-gelatin (AG), alginate-gelatin-PRP (AGP), and alginate-gelatin-PRF (AGF) were gelatinized right at the end of bioink fabrication and had a pH around 7. The scaffolds from bioinks supplemented with platelet concentrates secreted GFs that remained for 12 d, and the extracts from them were not cytotoxic for the L929 cell line. Conclusion In summary, bioinks were made by combining AG with platelet concentrates and had properties suitable for creating scaffolds with cell-oriented grafts in the development of artificial tissues and organs.
Collapse
Affiliation(s)
- Tuyet Thi Vi Le
- Department of Physiology and Animal Biotechnology, Biology and Biotechnology Faculty, University of Science, Ho Chi Minh City700000, Vietnam
- Laboratory of Tissue Engineering and Biomedical Materials, University of Science, Ho Chi Minh City700000, Vietnam
- Vietnam National University, Ho Chi Minh City700000, Vietnam
| | - Nghia Thi Hieu Phan
- Department of Physiology and Animal Biotechnology, Biology and Biotechnology Faculty, University of Science, Ho Chi Minh City700000, Vietnam
- Laboratory of Tissue Engineering and Biomedical Materials, University of Science, Ho Chi Minh City700000, Vietnam
- Vietnam National University, Ho Chi Minh City700000, Vietnam
| | - Ha Le Bao Tran
- Department of Physiology and Animal Biotechnology, Biology and Biotechnology Faculty, University of Science, Ho Chi Minh City700000, Vietnam
- Laboratory of Tissue Engineering and Biomedical Materials, University of Science, Ho Chi Minh City700000, Vietnam
- Vietnam National University, Ho Chi Minh City700000, Vietnam
| |
Collapse
|
9
|
Merotto E, Pavan PG, Piccoli M. Three-Dimensional Bioprinting of Naturally Derived Hydrogels for the Production of Biomimetic Living Tissues: Benefits and Challenges. Biomedicines 2023; 11:1742. [PMID: 37371837 DOI: 10.3390/biomedicines11061742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Three-dimensional bioprinting is the process of manipulating cell-laden bioinks to fabricate living structures. Three-dimensional bioprinting techniques have brought considerable innovation in biomedicine, especially in the field of tissue engineering, allowing the production of 3D organ and tissue models for in vivo transplantation purposes or for in-depth and precise in vitro analyses. Naturally derived hydrogels, especially those obtained from the decellularization of biological tissues, are promising bioinks for 3D printing purposes, as they present the best biocompatibility characteristics. Despite this, many natural hydrogels do not possess the necessary mechanical properties to allow a simple and immediate application in the 3D printing process. In this review, we focus on the bioactive and mechanical characteristics that natural hydrogels may possess to allow efficient production of organs and tissues for biomedical applications, emphasizing the reinforcement techniques to improve their biomechanical properties.
Collapse
Affiliation(s)
- Elena Merotto
- Tissue Engineering Lab, Istituto di Ricerca Pediatrica Città della Speranza, Corso Statu Uniti 4, 35127 Padova, Italy
- Department of Industrial Engineering, University of Padova, Via Gradenigo 6a, 35129 Padova, Italy
| | - Piero G Pavan
- Tissue Engineering Lab, Istituto di Ricerca Pediatrica Città della Speranza, Corso Statu Uniti 4, 35127 Padova, Italy
- Department of Industrial Engineering, University of Padova, Via Gradenigo 6a, 35129 Padova, Italy
| | - Martina Piccoli
- Tissue Engineering Lab, Istituto di Ricerca Pediatrica Città della Speranza, Corso Statu Uniti 4, 35127 Padova, Italy
| |
Collapse
|
10
|
Lyu Y, Liu Y, He H, Wang H. Application of Silk-Fibroin-Based Hydrogels in Tissue Engineering. Gels 2023; 9:gels9050431. [PMID: 37233022 DOI: 10.3390/gels9050431] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023] Open
Abstract
Silk fibroin (SF) is an excellent protein-based biomaterial produced by the degumming and purification of silk from cocoons of the Bombyx mori through alkali or enzymatic treatments. SF exhibits excellent biological properties, such as mechanical properties, biocompatibility, biodegradability, bioabsorbability, low immunogenicity, and tunability, making it a versatile material widely applied in biological fields, particularly in tissue engineering. In tissue engineering, SF is often fabricated into hydrogel form, with the advantages of added materials. SF hydrogels have mostly been studied for their use in tissue regeneration by enhancing cell activity at the tissue defect site or counteracting tissue-damage-related factors. This review focuses on SF hydrogels, firstly summarizing the fabrication and properties of SF and SF hydrogels and then detailing the regenerative effects of SF hydrogels as scaffolds in cartilage, bone, skin, cornea, teeth, and eardrum in recent years.
Collapse
Affiliation(s)
- Yihan Lyu
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Yusheng Liu
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Houzhe He
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Hongmei Wang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China
| |
Collapse
|
11
|
Meissner S, Raos B, Svirskis D. Hydrogels can control the presentation of growth factors and thereby improve their efficacy in tissue engineering. Eur J Pharm Biopharm 2022. [DOI: 10.1016/j.ejpb.2022.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
12
|
Yazdanian M, Alam M, Abbasi K, Rahbar M, Farjood A, Tahmasebi E, Tebyaniyan H, Ranjbar R, Hesam Arefi A. Synthetic materials in craniofacial regenerative medicine: A comprehensive overview. Front Bioeng Biotechnol 2022; 10:987195. [PMID: 36440445 PMCID: PMC9681815 DOI: 10.3389/fbioe.2022.987195] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/26/2022] [Indexed: 07/25/2023] Open
Abstract
The state-of-the-art approach to regenerating different tissues and organs is tissue engineering which includes the three parts of stem cells (SCs), scaffolds, and growth factors. Cellular behaviors such as propagation, differentiation, and assembling the extracellular matrix (ECM) are influenced by the cell's microenvironment. Imitating the cell's natural environment, such as scaffolds, is vital to create appropriate tissue. Craniofacial tissue engineering refers to regenerating tissues found in the brain and the face parts such as bone, muscle, and artery. More biocompatible and biodegradable scaffolds are more commensurate with tissue remodeling and more appropriate for cell culture, signaling, and adhesion. Synthetic materials play significant roles and have become more prevalent in medical applications. They have also been used in different forms for producing a microenvironment as ECM for cells. Synthetic scaffolds may be comprised of polymers, bioceramics, or hybrids of natural/synthetic materials. Synthetic scaffolds have produced ECM-like materials that can properly mimic and regulate the tissue microenvironment's physical, mechanical, chemical, and biological properties, manage adherence of biomolecules and adjust the material's degradability. The present review article is focused on synthetic materials used in craniofacial tissue engineering in recent decades.
Collapse
Affiliation(s)
- Mohsen Yazdanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mostafa Alam
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Abbasi
- Department of Prosthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Rahbar
- Department of Restorative Dentistry, School of Dentistry, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Amin Farjood
- Orthodontic Department, Dental School, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Elahe Tahmasebi
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Tebyaniyan
- Department of Science and Research, Islimic Azade University, Tehran, Iran
| | - Reza Ranjbar
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Arian Hesam Arefi
- Dental Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
13
|
Lee DH, Lee JH, Pyun YC, Shin ME, Shin EY, Been S, Song JE, Migliaresi C, Motta A, Khang G. Impact of Agarose Hydrogels as Cell Vehicles for Neo Retinal Pigment Epithelium Formation: In Vitro Study. Macromol Res 2022. [DOI: 10.1007/s13233-022-0091-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Chang HK, Yang DH, Ha MY, Kim HJ, Kim CH, Kim SH, Choi JW, Chun HJ. 3D printing of cell-laden visible light curable glycol chitosan bioink for bone tissue engineering. Carbohydr Polym 2022; 287:119328. [DOI: 10.1016/j.carbpol.2022.119328] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 02/13/2022] [Accepted: 03/06/2022] [Indexed: 12/16/2022]
|
15
|
Fatimi A, Okoro OV, Podstawczyk D, Siminska-Stanny J, Shavandi A. Natural Hydrogel-Based Bio-Inks for 3D Bioprinting in Tissue Engineering: A Review. Gels 2022; 8:179. [PMID: 35323292 PMCID: PMC8948717 DOI: 10.3390/gels8030179] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023] Open
Abstract
Three-dimensional (3D) printing is well acknowledged to constitute an important technology in tissue engineering, largely due to the increasing global demand for organ replacement and tissue regeneration. In 3D bioprinting, which is a step ahead of 3D biomaterial printing, the ink employed is impregnated with cells, without compromising ink printability. This allows for immediate scaffold cellularization and generation of complex structures. The use of cell-laden inks or bio-inks provides the opportunity for enhanced cell differentiation for organ fabrication and regeneration. Recognizing the importance of such bio-inks, the current study comprehensively explores the state of the art of the utilization of bio-inks based on natural polymers (biopolymers), such as cellulose, agarose, alginate, decellularized matrix, in 3D bioprinting. Discussions regarding progress in bioprinting, techniques and approaches employed in the bioprinting of natural polymers, and limitations and prospects concerning future trends in human-scale tissue and organ fabrication are also presented.
Collapse
Affiliation(s)
- Ahmed Fatimi
- Department of Chemistry, Polydisciplinary Faculty, Sultan Moulay Slimane University, P.O. Box 592 Mghila, Beni-Mellal 23000, Morocco
- ERSIC, Polydisciplinary Faculty, Sultan Moulay Slimane University, P.O. Box 592 Mghila, Beni-Mellal 23000, Morocco
| | - Oseweuba Valentine Okoro
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium; (O.V.O.); (J.S.-S.)
| | - Daria Podstawczyk
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373 Wroclaw, Poland;
| | - Julia Siminska-Stanny
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium; (O.V.O.); (J.S.-S.)
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373 Wroclaw, Poland;
| | - Amin Shavandi
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium; (O.V.O.); (J.S.-S.)
| |
Collapse
|
16
|
Du G, Cheng X, Zhang Z, Han L, Wu K, Li Y, Lin X. TGF-Beta Induced Key Genes of Osteogenic and Adipogenic Differentiation in Human Mesenchymal Stem Cells and MiRNA-mRNA Regulatory Networks. Front Genet 2021; 12:759596. [PMID: 34899844 PMCID: PMC8656281 DOI: 10.3389/fgene.2021.759596] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/28/2021] [Indexed: 12/21/2022] Open
Abstract
Background: The clinical efficacy of osteoporosis therapy is unsatisfactory. However, there is currently no gold standard for the treatment of osteoporosis. Recent studies have indicated that a switch from osteogenic to adipogenic differentiation in human bone marrow mesenchymal stem cells (hMSCs) induces osteoporosis. This study aimed to provide a more comprehensive understanding of the biological mechanisms involved in this process and to identify key genes involved in osteogenic and adipogenic differentiation in hMSCs to provide new insights for the prevention and treatment of osteoporosis. Methods: Microarray and bioinformatics approaches were used to identify the differentially expressed genes (DEGs) involved in osteogenic and adipogenic differentiation, and the biological functions and pathways of these genes were analyzed. Hub genes were identified, and the miRNA–mRNA interaction networks of these hub genes were constructed. Results: In an optimized microenvironment, transforming growth factor-beta (TGF-beta) could promote osteogenic differentiation and inhibit adipogenic differentiation of hMSCs. According to our study, 98 upregulated genes involved in osteogenic differentiation and 66 downregulated genes involved in adipogenic differentiation were identified, and associated biological functions and pathways were analyzed. Based on the protein–protein interaction (PPI) networks, the hub genes of the upregulated genes (CTGF, IGF1, BMP2, MMP13, TGFB3, MMP3, and SERPINE1) and the hub genes of the downregulated genes (PPARG, TIMP3, ANXA1, ADAMTS5, AGTR1, CXCL12, and CEBPA) were identified, and statistical analysis revealed significant differences. In addition, 36 miRNAs derived from the upregulated hub genes were screened, as were 17 miRNAs derived from the downregulated hub genes. Hub miRNAs (hsa-miR-27a/b-3p, hsa-miR-128-3p, hsa-miR-1-3p, hsa-miR-98-5p, and hsa-miR-130b-3p) coregulated both osteogenic and adipogenic differentiation factors. Conclusion: The upregulated hub genes identified are potential targets for osteogenic differentiation in hMSCs, whereas the downregulated hub genes are potential targets for adipogenic differentiation. These hub genes and miRNAs play important roles in adipogenesis and osteogenesis of hMSCs. They may be related to the prevention and treatment not only of osteoporosis but also of obesity.
Collapse
Affiliation(s)
- Genfa Du
- Department of Orthopedics, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xinyuan Cheng
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zhen Zhang
- Department of Orthopedics, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Linjing Han
- Department of Orthopedics, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Keliang Wu
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yongjun Li
- Department of Orthopedics, Shunde Hospital Guangzhou University of Chinese Medicine, Foshan, China
| | - Xiaosheng Lin
- Department of Orthopedics, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
17
|
Seims KB, Hunt NK, Chow LW. Strategies to Control or Mimic Growth Factor Activity for Bone, Cartilage, and Osteochondral Tissue Engineering. Bioconjug Chem 2021; 32:861-878. [PMID: 33856777 DOI: 10.1021/acs.bioconjchem.1c00090] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Growth factors play a critical role in tissue repair and regeneration. However, their clinical success is limited by their low stability, short half-life, and rapid diffusion from the delivery site. Supraphysiological growth factor concentrations are often required to demonstrate efficacy but can lead to adverse reactions, such as inflammatory complications and increased cancer risk. These issues have motivated the development of delivery systems that enable sustained release and controlled presentation of growth factors. This review specifically focuses on bioconjugation strategies to enhance growth factor activity for bone, cartilage, and osteochondral applications. We describe approaches to localize growth factors using noncovalent and covalent methods, bind growth factors via peptides, and mimic growth factor function with mimetic peptide sequences. We also discuss emerging and future directions to control spatiotemporal growth factor delivery to improve functional tissue repair and regeneration.
Collapse
Affiliation(s)
- Kelly B Seims
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Natasha K Hunt
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Lesley W Chow
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
18
|
Marimuthu T, Kumar P, Choonara YE. Visible light-curable water-soluble chitosan derivative, chitosan hydrogel, and preparation method: a patent evaluation of US2019202998A1. Expert Opin Ther Pat 2021; 31:351-360. [PMID: 33711239 DOI: 10.1080/13543776.2021.1903433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Water soluble polysaccharides are versatile structural materials that can be used for the design of biocompatible hydrogels and wet dressings in wound healing applications. Glycol chitosan (GC) is an example of a multifunctional water-soluble chitosan derivative that has inherent wound healing properties and reactive sites for chemical modification.Areas covered: United States (US) patent US2019202998A1 describes the preparation of a novel wound healing technology based on a three-dimensional (3D) crosslinked GC hydrogel (GCH) wet dressing, prepared via the synthesis of PEG1K-biscarboxylic acid-g-Glycol Chitosan-g-methacrylate using visible light induced photocrosslinking. The selected polymeric network enables the encapsulation of additional growth factors or bioactives on reactive sites. Wet dressings in US2019202998A1 were evaluated against a commercially available control for in vitro release, cytotoxicity, and in vivo wound healing ability in a preliminary mouse model, with the overall wound healing performance consistent with related GC-based hydrogels.Expert opinion: Comprehensive biocompatibility and antimicrobial testing of the hydrogel is not reported in US2019202998A1, and is recommended as further work to enable clinical applicability. The invention disclosed in US2019202998A1 can potentially be integrated with 3D bioprinting and sensor technology for the preparation of 'smart' hydrogel wound dressings, and is a potential area for future research.
Collapse
Affiliation(s)
- Thashree Marimuthu
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Parktown, South Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Parktown, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Parktown, South Africa
| |
Collapse
|
19
|
Voci S, Gagliardi A, Molinaro R, Fresta M, Cosco D. Recent Advances of Taxol-Loaded Biocompatible Nanocarriers Embedded in Natural Polymer-Based Hydrogels. Gels 2021; 7:33. [PMID: 33804970 PMCID: PMC8103278 DOI: 10.3390/gels7020033] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
The discovery of paclitaxel (PTX) has been a milestone in anti-cancer therapy and has promoted the development and marketing of various formulations that have revolutionized the therapeutic approach towards several malignancies. Despite its peculiar anti-cancer activity, the physico-chemical properties of PTX compromise the administration of the compound in polar media. Because of this, since the development of the first Food and Drug Administration (FDA)-approved formulation (Taxol®), consistent efforts have been made to obtain suitable delivery systems able to preserve/increase PTX efficacy and to overcome the side effects correlated to the presence of some excipients. The exploitation of natural polymers as potential materials for drug delivery purposes has favored the modulation of the bioavailability and the pharmacokinetic profiles of the drug, and in this regard, several formulations have been developed that allow the controlled release of the active compound. In this mini-review, the recent advances concerning the design and applications of natural polymer-based hydrogels containing PTX-loaded biocompatible nanocarriers are discussed. The technological features of these formulations as well as the therapeutic outcome achieved following their administration will be described, demonstrating their potential role as innovative systems to be used in anti-tumor therapy.
Collapse
Affiliation(s)
- Silvia Voci
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S.Venuta”, I-88100 Catanzaro, Italy; (S.V.); (A.G.); (M.F.)
| | - Agnese Gagliardi
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S.Venuta”, I-88100 Catanzaro, Italy; (S.V.); (A.G.); (M.F.)
| | | | - Massimo Fresta
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S.Venuta”, I-88100 Catanzaro, Italy; (S.V.); (A.G.); (M.F.)
| | - Donato Cosco
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S.Venuta”, I-88100 Catanzaro, Italy; (S.V.); (A.G.); (M.F.)
| |
Collapse
|
20
|
Li Y, Liu Y, Guo Q. Silk fibroin hydrogel scaffolds incorporated with chitosan nanoparticles repair articular cartilage defects by regulating TGF-β1 and BMP-2. Arthritis Res Ther 2021; 23:50. [PMID: 33531052 PMCID: PMC7856775 DOI: 10.1186/s13075-020-02382-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 12/07/2020] [Indexed: 12/26/2022] Open
Abstract
Cartilage defects frequently occur around the knee joint yet cartilage has limited self-repair abilities. Hydrogel scaffolds have excellent potential for use in tissue engineering. Therefore, the aim of the present study was to assess the ability of silk fibroin (SF) hydrogel scaffolds incorporated with chitosan (CS) nanoparticles (NPs) to repair knee joint cartilage defects. In the present study, composite systems of CS NPs incorporated with transforming growth factor-β1 (TGF-β1; TGF-β1@CS) and SF incorporated with bone morphogenetic protein-2 (BMP-2; TGF-β1@CS/BMP-2@SF) were developed and characterized with respect to their size distribution, zeta potential, morphology, and release of TGF-β1 and BMP-2. Bone marrow stromal cells (BMSCs) were co-cultured with TGF-β1@CS/BMP-2@SF extracts to assess chondrogenesis in vitro using a cell counting kit-8 assay, which was followed by in vivo evaluations in a rabbit model of knee joint cartilage defects. The constructed TGF-β1@CS/BMP-2@SF composite system was successfully characterized and showed favorable biocompatibility. In the presence of TGF-β1@CS/BMP-2@SF extracts, BMSCs exhibited normal cell morphology and enhanced chondrogenic ability both in vitro and in vivo, as evidenced by the promotion of cell viability and the alleviation of cartilage defects. Thus, the TGF-β1@CS/BMP-2@SF hydrogel developed in the present study promoted chondrogenic ability of BMSCs both in vivo and in vitro by releasing TGF-β1 and BMP-2, thereby offering a novel therapeutic strategy for repairing articular cartilage defects in knee joints.
Collapse
Affiliation(s)
- Yuan Li
- Department of Joint Surgery, Linyi People's Hospital, Linyi, 276000, People's Republic of China
| | - Yanping Liu
- Department of Orthopaedics of Integrated traditional and Western Medicine, Linyi People's Hospital, Linyi, 276000, People's Republic of China
| | - Qiang Guo
- Department of Hand and Foot Surgery, Linyi People's Hospital, Linyi, 276000, People's Republic of China.
| |
Collapse
|
21
|
Poustchi F, Amani H, Ahmadian Z, Niknezhad SV, Mehrabi S, Santos HA, Shahbazi M. Combination Therapy of Killing Diseases by Injectable Hydrogels: From Concept to Medical Applications. Adv Healthc Mater 2021; 10:e2001571. [PMID: 33274841 DOI: 10.1002/adhm.202001571] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/13/2020] [Indexed: 01/16/2023]
Abstract
The complexity of hard-to-treat diseases strongly undermines the therapeutic potential of available treatment options. Therefore, a paradigm shift from monotherapy toward combination therapy has been observed in clinical research to improve the efficiency of available treatment options. The advantages of combination therapy include the possibility of synchronous alteration of different biological pathways, reducing the required effective therapeutic dose, reducing drug resistance, and lowering the overall costs of treatment. The tunable physical properties, excellent biocompatibility, facile preparation, and ease of administration with minimal invasiveness of injectable hydrogels (IHs) have made them excellent candidates to solve the clinical and pharmacological limitations of present systems for multitherapy by direct delivery of therapeutic payloads and improving therapeutic responses through the formation of depots containing drugs, genes, cells, or a combination of them in the body after a single injection. In this review, currently available methods for the design and fabrication of IHs are systematically discussed in the first section. Next, as a step toward establishing IHs for future multimodal synergistic therapies, recent advances in cancer combination therapy, wound healing, and tissue engineering are addressed in detail in the following sections. Finally, opportunities and challenges associated with IHs for multitherapy are listed and further discussed.
Collapse
Affiliation(s)
- Fatemeh Poustchi
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki FI‐00014 Finland
- Department of Nanotechnology University of Guilan Rasht Guilan 41996‐13765 Iran
| | - Hamed Amani
- Faculty of Advanced Technologies in Medicine, Department of Medical Nanotechnology Iran University of Medical Science Tehran 14496‐14535 Iran
| | - Zainab Ahmadian
- Department of Pharmaceutics School of Pharmacy Zanjan University of Medical Science Zanjan 45139‐56184 Iran
| | - Seyyed Vahid Niknezhad
- Burn and Wound Healing Research Center Shiraz University of Medical Sciences Shiraz 71987‐54361 Iran
| | - Soraya Mehrabi
- Faculty of Medicine, Department of Physiology Iran University of Medical Sciences Tehran 14496‐14535 Iran
| | - Hélder A. Santos
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki FI‐00014 Finland
- Helsinki Institute of Life Science (HiLIFE) University of Helsinki Helsinki FI‐00014 Finland
| | - Mohammad‐Ali Shahbazi
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki FI‐00014 Finland
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC) Zanjan University of Medical Sciences Zanjan 45139‐56184 Iran
| |
Collapse
|
22
|
Moon YJ, Yoon SJ, Koo JH, Yoon Y, Byun HJ, Kim HS, Khang G, Chun HJ, Yang DH. β-Cyclodextrin/Triclosan Complex-Grafted Methacrylated Glycol Chitosan Hydorgel by Photocrosslinking via Visible Light Irradiation for a Tissue Bio-Adhesive. Int J Mol Sci 2021; 22:E700. [PMID: 33445775 PMCID: PMC7828271 DOI: 10.3390/ijms22020700] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 01/02/2023] Open
Abstract
Accelerating wound healing with minimized bacterial infection has become a topic of interest in the development of the new generation of tissue bio-adhesives. In this study, we fabricated a hydrogel system (MGC-g-CD-ic-TCS) consisting of triclosan (TCS)-complexed beta-cyclodextrin (β-CD)-conjugated methacrylated glycol chitosan (MGC) as an antibacterial tissue adhesive. Proton nuclear magnetic resonance (1H NMR) and differential scanning calorimetry (DSC) results showed the inclusion complex formation between MGC-g-CD and TCS. The increase of storage modulus (G') of MGC-g-CD-ic-TCS after visible light irradiation for 200 s indicated its hydrogelation. The swollen hydrogel in aqueous solution resulted in two release behaviors of an initial burst and sustained release. Importantly, in vitro and in vivo results indicated that MGC-g-CD-ic-TCS inhibited bacterial infection and improved wound healing, suggesting its high potential application as an antibacterial tissue bio-adhesive.
Collapse
Affiliation(s)
- Young Jae Moon
- Department of Biochemistry & Molecular Biology & Orthopaedic Surgery, Research Institute for Endocrine Sciences, Jeonbuk National University Hospital, Jeonbuk National University Medical School, Jeonju 54896, Korea; (Y.J.M.); (J.-H.K.)
| | - Sun-Jung Yoon
- Department of Orthopedic Surgery, Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeonbuk National University Medical School, Jeonju 54896, Korea;
| | - Jeung-Hyun Koo
- Department of Biochemistry & Molecular Biology & Orthopaedic Surgery, Research Institute for Endocrine Sciences, Jeonbuk National University Hospital, Jeonbuk National University Medical School, Jeonju 54896, Korea; (Y.J.M.); (J.-H.K.)
| | - Yihyun Yoon
- Institute of Cell and Tissue Engineering, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (Y.Y.); (H.J.B.); (H.S.K.); (H.J.C.)
| | - Hye Jun Byun
- Institute of Cell and Tissue Engineering, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (Y.Y.); (H.J.B.); (H.S.K.); (H.J.C.)
| | - Hyeon Soo Kim
- Institute of Cell and Tissue Engineering, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (Y.Y.); (H.J.B.); (H.S.K.); (H.J.C.)
| | - Gilson Khang
- Department of BIN Convergence Technology & Polymer Nano Science & Technology and Polymer BIN Research Center, Jeonbuk National University, Jeonju 54896, Korea;
| | - Heung Jae Chun
- Institute of Cell and Tissue Engineering, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (Y.Y.); (H.J.B.); (H.S.K.); (H.J.C.)
- Department of Biomedical & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Dae Hyeok Yang
- Institute of Cell and Tissue Engineering, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (Y.Y.); (H.J.B.); (H.S.K.); (H.J.C.)
| |
Collapse
|
23
|
Rizzo F, Kehr NS. Recent Advances in Injectable Hydrogels for Controlled and Local Drug Delivery. Adv Healthc Mater 2021; 10:e2001341. [PMID: 33073515 DOI: 10.1002/adhm.202001341] [Citation(s) in RCA: 159] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/07/2020] [Indexed: 12/14/2022]
Abstract
Injectable hydrogels have received considerable interest in the biomedical field due to their potential applications in minimally invasive local drug delivery, more precise implantation, and site-specific drug delivery into poorly reachable tissue sites and into interface tissues, where wound healing takes a long time. Injectable hydrogels, such as in situ forming and/or shear-thinning hydrogels, can be generated using chemically and/or physically crosslinked hydrogels. Yet, for controlled and local drug delivery applications, the ideal injectable hydrogel should be able to provide controlled and sustained release of drug molecules to the target site when needed and should limit nonspecific drug molecule distribution in healthy tissues. Thus, such hydrogels should sense the environmental changes that arise in disease states and be able to release the optimal amount of drug over the necessary time period to the target region. To address this, researchers have designed stimuli-responsive injectable hydrogels. Stimuli-responsive hydrogels change their shape or volume when they sense environmental stimuli, e.g., pH, temperature, light, electrical signals, or enzymatic changes, and deliver an optimal concentration of drugs to the target site without affecting healthy tissues.
Collapse
Affiliation(s)
- Fabio Rizzo
- Istituto di Scienze e Tecnologie Chimiche “G. Natta” (SCITEC) Consiglio Nazionale delle Ricerche (CNR) via Fantoli 16/15 Milan 20138 Italy
- Organic Chemistry Institute Westfälische Wilhelms‐Universität Münster Corrensstr. 36 Münster 48149 Germany
- Center for Soft Nanoscience (SoN) Westfälische Wilhelms‐Universität Münster Busso‐Peus‐Str. 10 Münster 48149 Germany
| | - Nermin Seda Kehr
- Center for Soft Nanoscience (SoN) Westfälische Wilhelms‐Universität Münster Busso‐Peus‐Str. 10 Münster 48149 Germany
- Physikalisches Institut Westfälische Wilhelms‐Universität Münster Wilhelm‐Klemm‐Str. 10 Münster 48149 Germany
| |
Collapse
|
24
|
Mehrotra D, Dwivedi R, Nandana D, Singh RK. From injectable to 3D printed hydrogels in maxillofacial tissue engineering: A review. J Oral Biol Craniofac Res 2020; 10:680-689. [PMID: 33072505 DOI: 10.1016/j.jobcr.2020.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/25/2020] [Accepted: 09/12/2020] [Indexed: 02/06/2023] Open
Abstract
Introduction This review aims at describing different types of hydrogels in context to their composition, fabrication techniques and other specific features along with an insight into the latest advancements including smart hydrogels, 3D printed, programmable, shape memory and self-healing hydrogels for their applicability as scaffold in maxillofacial bone and cartilage tissue regeneration. Methods Electronic database searches were undertaken on PubMed, Ovid, Medline, Embase, ProQuest and science direct for English language literature, published for application of hydrogels in maxillofacial bone and cartilage tissue engineering. The search items used in this article were hydrogel, bone and cartilage tissue engineering, maxillofacial, clinical trials. Reviews and in vitro studies were excluded. Results Search for injectable hydrogel showed 4955 articles, when restricted to bone tissue engineering results were reduced to 463 and for cartilage engineering to 335; when we limited it to maxillofacial bone and cartilage tissue engineering, search results showed 49 articles to which 9 additional articles were included from references, after exclusion of in-vitro studies and duplicates 16 articles were obtained for our study. Similarly, for 3D printed hydrogels, result showed 1126 articles, which got restricted to 19 when searched for maxillofacial bone and cartilage engineering, then 2 additional articles were included directly from references, and finally after exclusion of the invitro studies and duplicates, a total of 5 articles were obtained. Conclusion Modifications in hydrogel can improve the mechanical properties, biocompatibility and unique chemistries for its use in bone and cartilage tissue engineering for future research.
Collapse
Affiliation(s)
- Divya Mehrotra
- Professor, Dept of Oral & Maxillofacial Surgery, King George's Medical University, Lucknow, India
| | - Ruby Dwivedi
- Research Student, Dept of Oral & Maxillofacial Surgery, King George's Medical University, Lucknow, India
| | - Deepti Nandana
- Research Student, Dept of Oral & Maxillofacial Surgery, King George's Medical University, Lucknow, India
| | - R K Singh
- Professor, Dept of Oral & Maxillofacial Surgery, King George's Medical University, Lucknow, India
| |
Collapse
|
25
|
Tao F, Ma S, Tao H, Jin L, Luo Y, Zheng J, Xiang W, Deng H. Chitosan-based drug delivery systems: From synthesis strategy to osteomyelitis treatment - A review. Carbohydr Polym 2020; 251:117063. [PMID: 33142615 DOI: 10.1016/j.carbpol.2020.117063] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/22/2020] [Accepted: 09/03/2020] [Indexed: 12/21/2022]
Abstract
Osteomyelitis is a complex disease in orthopedics mainly caused by bacterial pathogens invading bone or bone marrow. The treatment of osteomyelitis is highly difficult and it is a major challenge in orthopedic surgery. The long-term systemic use of antibiotics may lead to antibiotic resistance and has limited effects on eradicating local biofilms. Localized antibiotic delivery after surgical debridement can overcome the problem of antibiotic resistance and reduce systemic toxicity. Chitosan, a special cationic polysaccharide, is a product extracted from the deacetylation of chitin. It has numerous advantages, such as nontoxicity, biocompatibility, and biodegradability. Recently, chitosan has attracted significant attention in bacterial inhibition and drug delivery. Because chitosan contains many functional bioactive groups conducive to chemical reaction and modification, some chitosan-based biomaterials have been applied as the local antibiotic delivery systems in the treatment of osteomyelitis. This review aims to introduce recent advances in the biomedical applications of chitosan-based drug delivery systems in osteomyelitis treatment and to highlight the perspectives for further studies.
Collapse
Affiliation(s)
- Fenghua Tao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China; Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Sijia Ma
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Hai Tao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Lin Jin
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Yue Luo
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Jian Zheng
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Wei Xiang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China; Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China.
| | - Hongbing Deng
- Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
26
|
Kim SY, Hwang YS, Chun HJ, Yang DH. Preparation of a photocured GelMA hydrogel co-cultured with HOKs and HGFs for an artificial oral mucosal tissue model. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.06.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
27
|
Yue S, He H, Li B, Hou T. Hydrogel as a Biomaterial for Bone Tissue Engineering: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1511. [PMID: 32752105 PMCID: PMC7466535 DOI: 10.3390/nano10081511] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023]
Abstract
Severe bone damage from diseases, including extensive trauma, fractures, and bone tumors, cannot self-heal, while traditional surgical treatment may bring side effects such as infection, inflammation, and pain. As a new biomaterial with controllable mechanical properties and biocompatibility, hydrogel is widely used in bone tissue engineering (BTE) as a scaffold for growth factor transport and cell adhesion. In order to make hydrogel more suitable for the local treatment of bone diseases, hydrogel preparation methods should be combined with synthetic materials with excellent properties and advanced technologies in different fields to better control drug release in time and orientation. It is necessary to establish a complete method to evaluate the hydrogel's properties and biocompatibility with the human body. Moreover, establishment of standard animal models of bone defects helps in studying the therapeutic effect of hydrogels on bone repair, as well as to evaluate the safety and suitability of hydrogels. Thus, this review aims to systematically summarize current studies of hydrogels in BTE, including the mechanisms for promoting bone synthesis, design, and preparation; characterization and evaluation methods; as well as to explore future applications of hydrogels in BTE.
Collapse
Affiliation(s)
- Shuai Yue
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 43000, China
| | - Hui He
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 43000, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 43000, China
| | - Tao Hou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 43000, China
| |
Collapse
|
28
|
Visible Light-Curable Hydrogel Systems for Tissue Engineering and Drug Delivery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1249:85-93. [PMID: 32602092 DOI: 10.1007/978-981-15-3258-0_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Visible light-curable hydrogels have been investigated as tissue engineering scaffolds and drug delivery carriers due to their physicochemical and biological properties such as porosity, reservoirs for drugs/growth factors, and similarity to living tissue. The physical properties of hydrogels used in biomedical applications can be controlled by polymer concentration, cross-linking density, and light irradiation time. The aim of this review chapter is to outline the results of previous research on visible light-curable hydrogel systems. In the first section, we will introduce photo-initiators and mechanisms for visible light curing. In the next section, hydrogel applications as drug delivery carriers will be emphasized. Finally, cellular interactions and applications in tissue engineering will be discussed.
Collapse
|
29
|
Bone Regeneration Using Duck's Feet-Derived Collagen Scaffold as an Alternative Collagen Source. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020. [PMID: 32601934 DOI: 10.1007/978-981-15-3262-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Collagen is an important component that makes 25-35% of our body proteins. Over the past decades, tissue engineers have been designing collagen-based biocompatible materials and studying their applications in different fields. Collagen obtained from cattle and pigs has been mainly used until now, but collagen derived from fish and other livestock has attracted more attention since the outbreak of mad cow disease, and they are also used as a raw material for cosmetics and foods. Due to the zoonotic infection using collagen derived from pigs and cattle, their application in developing biomaterials is limited; hence, the development of new animal-derived collagen is required. In addition, there is a religion (Islam, Hinduism, and Judaism) limited to export raw materials and products derived from cattle and pig. Hence, high-value collagen that is universally accessible in the world market is required. Therefore, in this review, we have dealt with the use of duck's feet-derived collagen (DC) as an emerging alternative to solve this problem and also presenting few original investigated bone regeneration results performed using DC.
Collapse
|
30
|
Xue PP, Yuan JD, Yao Q, Zhao YZ, Xu HL. Bioactive Factors-imprinted Scaffold Vehicles for Promoting Bone Healing: The Potential Strategies and the Confronted Challenges for Clinical Production. BIO INTEGRATION 2020. [DOI: 10.15212/bioi-2020-0010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Abstract Wound repair of bone is a complicated multistep process orchestrated by inflammation, angiogenesis, callus formation, and bone remodeling. Many bioactive factors (BFs) including cytokine and growth factors (GFs) have previously been reported to be involved in regulating
wound healing of bone and some exogenous BFs such as bone morphogenetic proteins (BMPs) were proven to be helpful for improving bone healing. In this regard, the BFs reported for boosting bone repair were initially categorized according to their regulatory mechanisms. Thereafter, the challenges
including short half-life, poor stability, and rapid enzyme degradation and deactivation for these exogenous BFs in bone healing are carefully outlined in this review. For these issues, BFs-imprinted scaffold vehicles have recently been reported to promote the stability of BFs and enhance
their half-life in vivo. This review is focused on the incorporation of BFs into the modulated biomaterials with various forms of bone tissue engineering applications: firstly, rigid bone graft substitutes (BGSs) were used to imprint BFs for large scale bone defect repair; secondly,
the soft sponge-like scaffold carrying BFs is discussed as filling materials for the cavity of bone defects; thirdly, various injectable vehicles including hydrogel, nanoparticles, and microspheres for the delivery of BFs were also introduced for irregular bone fracture repair. Meanwhile,
the challenges for BFs-imprinted scaffold vehicles are also analyzed in this review.
Collapse
Affiliation(s)
- Peng-Peng Xue
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Jian-dong Yuan
- Department of Orthopaedics, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Qing Yao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Ying-Zheng Zhao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - He-Lin Xu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| |
Collapse
|
31
|
Lee S, Choi JH, Park A, Rim M, Youn J, Lee W, Song JE, Khang G. Advanced gellan gum-based glycol chitosan hydrogel for cartilage tissue engineering biomaterial. Int J Biol Macromol 2020; 158:452-460. [PMID: 32335106 DOI: 10.1016/j.ijbiomac.2020.04.135] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/24/2020] [Accepted: 04/18/2020] [Indexed: 01/01/2023]
Abstract
Gellan gum (GG), a nature-derived polysaccharide, is one of the materials widely used in cartilage tissue engineering (TE). Glycol chitosan (GC), a derivative of chitosan, is a water-soluble natural polymer that has excellent biocompatibility and biodegradability as well as cell adhesion. Herein, GG was physically blended with GC to enhance the mechanical properties and microenvironment of the GG to apply in cartilage TE. The study was conducted with a hydrogel model which is similar to the extracellular matrix (ECM) of cartilage tissue. The physicochemical studies were carried out with morphological study, swelling ratio, weight loss, and sol fraction. The mechanical characterization was conducted with compression test and rheological study to confirm availability in cartilage TE material. Furthermore, in vitro studies such as morphology investigation, viability assay, GAG content, qRT-PCR, and histological study were performed to verify biocompatibility and chondrogenesis of the material. The mechanical and biological properties improved with a proper amount of GC. Overall results verify the potential of the material and can be further used for the cartilage TE.
Collapse
Affiliation(s)
- Sumi Lee
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea.
| | - Joo Hee Choi
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea.
| | - Ain Park
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea.
| | - Mina Rim
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea.
| | - Jina Youn
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea.
| | - Wonchan Lee
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea.
| | - Jeong Eun Song
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea.
| | - Gilson Khang
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea.
| |
Collapse
|
32
|
Yang B, Jiang J, Jiang L, Zheng P, Wang F, Zhou Y, Chen Z, Li M, Lian M, Tang S, Liu X, Peng H, Wang Q. Chitosan mediated solid lipid nanoparticles for enhanced liver delivery of zedoary turmeric oil in vivo. Int J Biol Macromol 2020; 149:108-115. [PMID: 31987952 DOI: 10.1016/j.ijbiomac.2020.01.222] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 01/15/2020] [Accepted: 01/22/2020] [Indexed: 02/05/2023]
Abstract
Zedoary turmeric oil (ZTO) has a strong antitumor activity. However, its volatility, insolubility, low bioavailability, and difficulty of medication owing to oily liquid limit its clinical applications. Solid lipid nanoparticles can provide hydrophobic environment to dissolve hydrophobic drug and solidify the oily active composition to decrease the volatility and facilitate the medication. Chitosan has been widely used in pharmaceutics in recent years and coating with chitosan further enhances the internalization of particles by cells due to charge attract. Here, Chitosan (CS)-coated solid lipid nanoparticles (SLN) loaded with ZTO was prepared and characterized using dynamic laser scanner (DLS) and transmission electron microscope (TEM). The uptake and distribution of drug were evaluated in vitro and in vivo. The average sizes of ZTO-SLN and CS-ZTO-SLN were 134.3 ± 3.42 nm and 210.7 ± 4.59 nm, respectively. CS coating inverted the surface charge of particles from -8.93 ± 1.92 mV to +9.12 ± 2.03 mV. The liver accumulation of CS-ZTO-SLN was higher than ZTO-SLN (chitosan-uncoated particles) by analysis of tissue homogenate using HPLC, and the bioavailability of ZTO was also obviously improved. The results suggested that SLN coated with CS improved the features of ZTO formulation and efficiently deliver drug to the liver.
Collapse
Affiliation(s)
- Bo Yang
- School of Pharmacy, Harbin University of Commerce, 138, Tong Da Street, Harbin 150076, China
| | - Jiaqi Jiang
- Department of Pharmaceutics, Daqing Campus, Harbin Medical University, 1 Xin Yang Road, Daqing 163319, China
| | - Lei Jiang
- Department of Pharmaceutics, Daqing Campus, Harbin Medical University, 1 Xin Yang Road, Daqing 163319, China
| | - Peiyu Zheng
- School of Pharmacy, Harbin University of Commerce, 138, Tong Da Street, Harbin 150076, China
| | - Fuling Wang
- School of Pharmacy, Harbin University of Commerce, 138, Tong Da Street, Harbin 150076, China
| | - Yang Zhou
- School of Pharmacy, Harbin University of Commerce, 138, Tong Da Street, Harbin 150076, China
| | - Zhong Chen
- Department of Pharmaceutics, Daqing Campus, Harbin Medical University, 1 Xin Yang Road, Daqing 163319, China
| | - Minghui Li
- Department of Pharmaceutics, Daqing Campus, Harbin Medical University, 1 Xin Yang Road, Daqing 163319, China
| | - Mingming Lian
- Department of Pharmaceutics, Daqing Campus, Harbin Medical University, 1 Xin Yang Road, Daqing 163319, China
| | - Shukun Tang
- Department of Pharmaceutics, Daqing Campus, Harbin Medical University, 1 Xin Yang Road, Daqing 163319, China
| | - Xiaoying Liu
- Department of Pharmaceutics, Daqing Campus, Harbin Medical University, 1 Xin Yang Road, Daqing 163319, China.
| | - Haisheng Peng
- Department of Pharmaceutics, Daqing Campus, Harbin Medical University, 1 Xin Yang Road, Daqing 163319, China.
| | - Qun Wang
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States.
| |
Collapse
|
33
|
Choi JH, Lee W, Song C, Moon BK, Yoon SJ, Neves NM, Reis RL, Khang G. Application of Gellan Gum-Based Scaffold for Regenerative Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1249:15-37. [PMID: 32602088 DOI: 10.1007/978-981-15-3258-0_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gellan gum (GG) is a linear microbial exopolysaccharide which is derived naturally by the fermentation process of Pseudomonas elodea. Application of GG in tissue engineering and regeneration medicine (TERM) is already over 10 years and has shown great potential. Although this biomaterial has many advantages such as biocompatibility, biodegradability, nontoxic in nature, and physical stability in the presence of cations, a variety of modification methods have been suggested due to some disadvantages such as mechanical properties, high gelation temperature, and lack of attachment sites. In this review, the application of GG-based scaffold for tissue engineering and approaches to improve GG properties are discussed. Furthermore, a recent trend and future perspective of GG-based scaffold are highlighted.
Collapse
Affiliation(s)
- Joo Hee Choi
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology and Polymer BIN Research Center, Jeonbuk National University, Jeonju, South Korea
| | - Wonchan Lee
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology and Polymer BIN Research Center, Jeonbuk National University, Jeonju, South Korea
| | - Cheolui Song
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology and Polymer BIN Research Center, Jeonbuk National University, Jeonju, South Korea
| | - Byung Kwan Moon
- Department of Polymer Nano Science & Technology, Jeonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Sun-Jung Yoon
- Department of Orthopedic Surgery, Medical School, Jeonbuk National University, Jeonju-si, Republic of Korea
| | - Nuno M Neves
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães, Portugal
- ICVS/3B's - PT Government Associated Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães, Portugal
- ICVS/3B's - PT Government Associated Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| | - Gilson Khang
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology and Polymer BIN Research Center, Jeonbuk National University, Jeonju, South Korea.
| |
Collapse
|
34
|
He W, Chen L, Huang Y, Xu Z, Xu W, Ding N, Chen J. Synergistic effects of recombinant Lentiviral-mediated BMP2 and TGF-beta3 on the osteogenic differentiation of rat bone marrow mesenchymal stem cells in vitro. Cytokine 2019; 120:1-8. [PMID: 30991228 DOI: 10.1016/j.cyto.2019.03.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 03/26/2019] [Accepted: 03/30/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Bone marrow mesenchymal stem cells (BMSCs) are considered good candidates for seed cells in bone engineering. The study aim to investigate the synergistic effects of human bone morphogenetic protein 2 (hBMP2) and transforming growth factor beta3 (hTGF-beta3) modified BMSCs on inducing osteogenic differentiation in vitro. METHODS Lentivirus (LV) carrying hBMP2 and/or hTGF-beta3 genes were constructed and used to transduce rat BMSCs. The expression of osteogenic molecules was detected by qRT-PCR and western blotting. RESULTS Targeted genes were PCR-amplified and confirmed by DNA sequencing and BLAST analysis. BMSCs infected by vectors effectively resulted in the overexpressions of hBMP2 and hTGF-beta3 and higher levels of hBMP2 and hTGF-beta3 in the culture supernatant. The co-transduction of hBMP2 and hTGF-beta3 induced BMSCs osteogenic differentiation more effectively than the transduction of hBMP2 or hTGF-beta3 individually. The expression levels of osteopontin (OPN), osteocalcin (OCN), and osteoprotegerin (OPG) in LV-hBMP2 + LV-hTGF-beta3 group (BMSCs transfected by vectors respectively carrying hBMP-2 gene and hTGF-beta3 gene) and LV-hBMP2-hTGF-beta3 group (BMSCs transfected by vector carrying hBMP2 and hTGF-beta3 fusion gene) were significantly higher than in LV-BMP2 (BMSCs transfected by vector carrying hBMP2 gene) and LV-TGF-beta3 (BMSCs transfected by vector carrying hTGF-beta3 gene) groups (P < 0.05). The hBMP2 and/or hTGF-beta3 overexpression upregulated alkaline phosphatase (ALP) activity. CONCLUSION The present study showed that hBMP2 and/or hTGF-beta3 genes can be successfully overexpressed in BMSCs. Our study proved that the two cytokines (hBMP2 and hTGF-beta3) could induce bone differentiation synergistically, which foresees the use of the combination of these two cytokines as a therapeutic strategy in the future.
Collapse
Affiliation(s)
- Wubing He
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Fujian Provincial Hospital, Provincial Clinical Medical College, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Lihong Chen
- Department of Pathology, School of Basic Medical Sciences of Fujian Medical University, Fuzhou, Fujian 350004, China
| | - Yongming Huang
- Fujian Provincial Hospital, Provincial Clinical Medical College, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Zhixian Xu
- Fujian Provincial Hospital, Provincial Clinical Medical College, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Wei Xu
- Fujian Provincial Hospital, Provincial Clinical Medical College, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Nuoting Ding
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jiantin Chen
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
35
|
Hyun H, Park MH, Jo G, Kim SY, Chun HJ, Yang DH. Photo-Cured Glycol Chitosan Hydrogel for Ovarian Cancer Drug Delivery. Mar Drugs 2019; 17:E41. [PMID: 30634553 PMCID: PMC6356222 DOI: 10.3390/md17010041] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 01/30/2023] Open
Abstract
In this study, we prepared an injectable drug delivery depot system based on a visible light-cured glycol chitosan (GC) hydrogel containing paclitaxel (PTX)-complexed beta-cyclodextrin (β-CD) (GC/CD/PTX) for ovarian cancer (OC) therapy using a tumor-bearing mouse model. The hydrogel depot system had a 23.8 Pa of storage modulus at 100 rad/s after visible light irradiation for 10 s. In addition, GC was swollen as a function of time. However, GC had no degradation with the time change. Eventually, the swollen GC matrix affected the releases of PTX and CD/PTX. GC/PTX and GC/CD/PTX exhibited a controlled release of PTX for 7 days. In addition, GC/CD/PTX had a rapid PTX release for 7 days due to improved water solubility of PTX through CD/PTX complex. In vitro cell viability tests showed that GC/CD/PTX had a lower cell viability percentage than the free PTX solution and GC/PTX. Additionally, GC/CD/PTX resulted in a superior antitumor effect against OC. Consequently, we suggest that the GC/CD system might have clinical potential for OC therapy by improving the water solubility of PTX, as PTX is included into the cavity of β-CD.
Collapse
Affiliation(s)
- Hoon Hyun
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 61469, Korea.
| | - Min Ho Park
- Department of Surgery, Chonnam National University Medical School, Gwangju 61469, Korea.
| | - Gayoung Jo
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 61469, Korea.
| | - So Yeon Kim
- Department of Dental Hygiene, College of Health Sciences, Cheongju University, Cheongju 28503, Korea.
| | - Heung Jae Chun
- Department of Biomedical Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
| | - Dae Hyeok Yang
- Institute of Cell and Tissue Engineering, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
| |
Collapse
|