1
|
Reyes-Weiss DS, Bligh M, Rhein-Knudsen N, Hehemann JH, Liebeke M, Westereng B, Horn SJ. Application of MALDI-MS for characterization of fucoidan hydrolysates and screening of endo-fucoidanase activity. Carbohydr Polym 2024; 340:122317. [PMID: 38858030 DOI: 10.1016/j.carbpol.2024.122317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/12/2024]
Abstract
Brown macroalgae synthesize large amounts of fucoidans, sulfated fucose-containing polysaccharides, in the ocean. Fucoidans are of importance for their recently discovered contribution to marine carbon dioxide sequestration and due to their potential applications in biotechnology and biomedicine. However, fucoidans have high intra- and intermolecular diversity that challenges assignment of structure to biological function and the development of applications. Fucoidan-active enzymes may be used to simplify this diversity by producing defined oligosaccharides more applicable for structural refinement, characterization, and structure to function assignment for example via bioassays. In this study, we combined MALDI mass spectrometry with biocatalysis to show that the endo-fucoidanases P5AFcnA and Wv323 can produce defined oligosaccharide structures directly from unrefined macroalgal biomass. P5AFcnA released oligosaccharides from seven commercial fucoidan extracts in addition to unrefined biomass of three macroalgae species indicating a broadly applicable approach reproducible across 10 species. Both MALDI-TOF/TOF and AP-MALDI-Orbitrap systems were used, demonstrating that the approach is not instrument-specific and exploiting their combined high-throughput and high-resolution capabilities. Overall, the combination of MALDI-MS and endo-fucoidanase assays offers high-throughput evaluation of fucoidan samples and also enables extraction of defined oligosaccharides of known structure from unrefined seaweed biomass.
Collapse
Affiliation(s)
- Diego S Reyes-Weiss
- Department of Chemistry, Biotechnology, and Life Science, Norwegian University of Life Sciences (NMBU), Christian Magnus Falsens vei 18, 1433 Ås, Norway
| | - Margot Bligh
- University of Bremen, MARUM Centre for Marine Environmental Sciences, Leobener Str. 8, D-28359 Bremen, Germany; Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359 Bremen, Germany
| | - Nanna Rhein-Knudsen
- Department of Chemistry, Biotechnology, and Life Science, Norwegian University of Life Sciences (NMBU), Christian Magnus Falsens vei 18, 1433 Ås, Norway
| | - Jan-Hendrik Hehemann
- University of Bremen, MARUM Centre for Marine Environmental Sciences, Leobener Str. 8, D-28359 Bremen, Germany; Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359 Bremen, Germany
| | - Manuel Liebeke
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359 Bremen, Germany; University of Kiel, Institute for Human Nutrition and Food Science, Heinrich-Hecht-Platz 10, 24118 Kiel, Germany
| | - Bjørge Westereng
- Department of Chemistry, Biotechnology, and Life Science, Norwegian University of Life Sciences (NMBU), Christian Magnus Falsens vei 18, 1433 Ås, Norway
| | - Svein Jarle Horn
- Department of Chemistry, Biotechnology, and Life Science, Norwegian University of Life Sciences (NMBU), Christian Magnus Falsens vei 18, 1433 Ås, Norway.
| |
Collapse
|
2
|
Mikkelsen MD, Tran VHN, Meier S, Nguyen TT, Holck J, Cao HTT, Van TTT, Thinh PD, Meyer AS, Morth JP. Structural and functional characterization of the novel endo-α(1,4)-fucoidanase Mef1 from the marine bacterium Muricauda eckloniae. Acta Crystallogr D Struct Biol 2023; 79:1026-1043. [PMID: 37877949 PMCID: PMC10619423 DOI: 10.1107/s2059798323008732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/04/2023] [Indexed: 10/26/2023] Open
Abstract
Fucoidanases (EC 3.2.1.-) catalyze the hydrolysis of glycosidic bonds between fucose residues in fucoidans. Fucoidans are a compositionally and structurally diverse class of fucose-containing sulfated polysaccharides that are primarily found in brown seaweeds. Here, the structural characterization of a novel endo-α(1,4)-fucoidanase, Mef1, from the marine bacterium Muricauda eckloniae is presented, showing sequence similarity to members of glycoside hydrolase family 107. Using carbohydrate polyacrylamide gel electrophoresis and nuclear magnetic resonance analyses, it is shown that the fucoidanase Mef1 catalyzes the cleavage of α(1,4)-linkages between fucose residues sulfated on C2 in the structure [-3)-α-L-Fucp2S-(1,4)-α-L-Fucp2S-(1-]n in fucoidan from Fucus evanescens. Kinetic analysis of Mef1 activity by Fourier transform infrared spectroscopy revealed that the specific Mef1 fucoidanase activity (Uf) on F. evanescens fucoidan was 0.1 × 10-3 Uf µM-1. By crystal structure determination of Mef1 at 1.8 Å resolution, a single-domain organization comprising a (β/α)8-barrel domain was determined. The active site was in an extended, positively charged groove that is likely to be designed to accommodate the binding of the negatively charged, sulfated fucoidan substrate. The active site of Mef1 comprises the amino acids His270 and Asp187, providing acid/base and nucleophile groups, respectively, for the hydrolysis of glycosidic bonds in the fucoidan backbone. Electron densities were identified for two possible Ca2+ ions in the enzyme, one of which is partially exposed to the active-site groove, while the other is very tightly coordinated. A water wire was discovered leading from the exterior of the Mef1 enzyme into the active site, passing the tightly coordinated Ca2+ site.
Collapse
Affiliation(s)
- Maria Dalgaard Mikkelsen
- Protein Chemistry and Enzyme Technology Section, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
| | - Vy Ha Nguyen Tran
- Protein Chemistry and Enzyme Technology Section, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
| | - Sebastian Meier
- Department of Chemistry, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
| | - Thuan Thi Nguyen
- Protein Chemistry and Enzyme Technology Section, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
| | - Jesper Holck
- Protein Chemistry and Enzyme Technology Section, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
| | - Hang Thi Thuy Cao
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, NhaTrang 650000, Vietnam
| | - Tran Thi Thanh Van
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, NhaTrang 650000, Vietnam
| | - Pham Duc Thinh
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, NhaTrang 650000, Vietnam
| | - Anne S. Meyer
- Protein Chemistry and Enzyme Technology Section, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
| | - Jens Preben Morth
- Protein Chemistry and Enzyme Technology Section, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
| |
Collapse
|
3
|
Krishna Perumal P, Dong CD, Chauhan AS, Anisha GS, Kadri MS, Chen CW, Singhania RR, Patel AK. Advances in oligosaccharides production from algal sources and potential applications. Biotechnol Adv 2023; 67:108195. [PMID: 37315876 DOI: 10.1016/j.biotechadv.2023.108195] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
In recent years, algal-derived glycans and oligosaccharides have become increasingly important in health applications due to higher bioactivities than plant-derived oligosaccharides. The marine organisms have complex, and highly branched glycans and more reactive groups to elicit greater bioactivities. However, complex and large molecules have limited use in broad commercial applications due to dissolution limitations. In comparison to these, oligosaccharides show better solubility and retain their bioactivities, hence, offering better applications opportunity. Accordingly, efforts are being made to develop a cost-effective method for enzymatic extraction of oligosaccharides from algal polysaccharides and algal biomass. Yet detailed structural characterization of algal-derived glycans is required to produce and characterize the potential biomolecules for improved bioactivity and commercial applications. Some macroalgae and microalgae are being evaluated as in vivo biofactories for efficient clinical trials, which could be very helpful in understanding the therapeutic responses. This review discusses the recent advancements in the production of oligosaccharides from microalgae. It also discusses the bottlenecks of the oligosaccharides research, technological limitations, and probable solutions to these problems. Furthermore, it presents the emerging bioactivities of algal oligosaccharides and their promising potential for possible biotherapeutic application.
Collapse
Affiliation(s)
- Pitchurajan Krishna Perumal
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Sustainable Environment Research Centre, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Ajeet Singh Chauhan
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Grace Sathyanesan Anisha
- Post-Graduate and Research Department of Zoology, Government College for Women, Thiruvananthapuram 695014, Kerala, India
| | - Mohammad Sibtain Kadri
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung City-804201, Taiwan
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Sustainable Environment Research Centre, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Reeta Rani Singhania
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India.
| |
Collapse
|
4
|
Liu S, Wang Q, Shao Z, Liu Q, He Y, Ren D, Yang H, Li X. Purification and Characterization of the Enzyme Fucoidanase from Cobetia amphilecti Utilizing Fucoidan from Undaria pinnatifida. Foods 2023; 12:foods12071555. [PMID: 37048377 PMCID: PMC10094035 DOI: 10.3390/foods12071555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 04/14/2023] Open
Abstract
Fucoidanase is an unstable enzyme with high specificity that requires a large about of time to screen it from microorganisms. In this study, enzymatic hydrolysis was used to produce low-molecular-weight fucoidan from microorganisms via the degradation of high-molecular-weight fucoidan without damage to the sulfate esterification structure of oligosaccharide. The microbial strain HN-25 was isolated from sea mud and was made to undergo mutagenicity under ultraviolet light. Fucoidanase was extracted via ultrasonication and its enzymatic activity was improved via optimization of the ultrasonic conditions. The enzymatic properties and degradation efficiency of fucoidanase were characterized. The microbial strain HN-25 is a Gram-negative aerobic and rod-shaped-cell bacterium, and therefore was identified as Cobetia amphilecti via 16s rDNA. The results proved that fucoidanase is a hydrolytic enzyme with a molecular weight of 35 kDa and with high activity and stability at 30 °C and pH 8.0. The activity of fucoidanase was significantly enhanced by sodium and calcium ions and inhibited by a copper ion and ethylenediaminetetraacetate (EDTA). There was a significant decrease in the molecular weight of fucoidan after enzymatic hydrolysis. The low-molecular-weight fuicodan was divided into four fractions, mainly concentrated at F3 (20~10 kDa) and F4 (≤6 kDa). These consequences suggest that fucoidanase obtained from Cobetia amphilecti is stable and efficient and could be a good tool in the production of bioactive compounds.
Collapse
Affiliation(s)
- Shu Liu
- Colleage of Food Science and Technology, Huazhong Agriculture University, Wuhan 430070, China
- Key Laboratory of Aquatic Products Processing and Utilization of Liaoning Province, National R and D Branch Center for Seaweed Processing, College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
| | - Qiukuan Wang
- Key Laboratory of Aquatic Products Processing and Utilization of Liaoning Province, National R and D Branch Center for Seaweed Processing, College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
| | - Zhenwen Shao
- Qingdao Seawit Life Science Co., Ltd., Qingdao 370200, China
| | - Qi Liu
- Bureau of Science and Technology of Qingdao West Area, Qingdao 266555, China
| | - Yunhai He
- Key Laboratory of Aquatic Products Processing and Utilization of Liaoning Province, National R and D Branch Center for Seaweed Processing, College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
| | - Dandan Ren
- Key Laboratory of Aquatic Products Processing and Utilization of Liaoning Province, National R and D Branch Center for Seaweed Processing, College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
| | - Hong Yang
- Colleage of Food Science and Technology, Huazhong Agriculture University, Wuhan 430070, China
| | - Xiang Li
- Key Laboratory of Aquatic Products Processing and Utilization of Liaoning Province, National R and D Branch Center for Seaweed Processing, College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
5
|
Zaitseva OO, Sergushkina MI, Khudyakov AN, Polezhaeva TV, Solomina ON. Seaweed sulfated polysaccharides and their medicinal properties. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Wang J, Liu Z, Pan X, Wang N, Li L, Du Y, Li J, Li M. Structural and Biochemical Analysis Reveals Catalytic Mechanism of Fucoidan Lyase from Flavobacterium sp. SA-0082. Mar Drugs 2022; 20:md20080533. [PMID: 36005536 PMCID: PMC9410043 DOI: 10.3390/md20080533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022] Open
Abstract
Fucoidans represent a type of polyanionic fucose-containing sulfated polysaccharides (FCSPs) that are cleaved by fucoidan-degrading enzymes, producing low-molecular-weight fucoidans with multiple biological activities suitable for pharmacological use. Most of the reported fucoidan-degrading enzymes are glycoside hydrolases, which have been well studied for their structures and catalytic mechanisms. Little is known, however, about the rarer fucoidan lyases, primarily due to the lack of structural information. FdlA from Flavobacterium sp. SA-0082 is an endo-type fucoidan-degrading enzyme that cleaves the sulfated fuco-glucuronomannan (SFGM) through a lytic mechanism. Here, we report nine crystal structures of the catalytic N-terminal domain of FdlA (FdlA-NTD), in both its wild type (WT) and mutant forms, at resolutions ranging from 1.30 to 2.25 Å. We show that the FdlA-NTD adopts a right-handed parallel β-helix fold, and possesses a substrate binding site composed of a long groove and a unique alkaline pocket. Our structural, biochemical, and enzymological analyses strongly suggest that FdlA-NTD utilizes catalytic residues different from other β-helix polysaccharide lyases, potentially representing a novel polysaccharide lyase family.
Collapse
Affiliation(s)
- Juanjuan Wang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zebin Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- College of Life Science, Capital Normal University, Beijing 100101, China
| | - Xiaowei Pan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Science, Capital Normal University, Beijing 100101, China
| | - Ning Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Legong Li
- College of Life Science, Capital Normal University, Beijing 100101, China
| | - Yuguang Du
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jianjun Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Correspondence: (J.L.); (M.L.)
| | - Mei Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence: (J.L.); (M.L.)
| |
Collapse
|
7
|
Tran VHN, Perna V, Mikkelsen MD, Thi Nguyen T, Thi Dieu Trang V, Baum A, Thi Thuy Cao H, Thi Thanh Van T, Meyer AS. A new FTIR assay for quantitative measurement of endo-fucoidanase activity. Enzyme Microb Technol 2022; 158:110035. [PMID: 35489196 DOI: 10.1016/j.enzmictec.2022.110035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/19/2022] [Accepted: 03/24/2022] [Indexed: 12/16/2022]
Abstract
Endo-fucoidanases, including EC 3.2.1.211 endo-α-1,3-L-fucanase and EC 3.2.1.212 endo-α-1,4-L-fucanase activities, catalyze depolymerization of fucoidans - a group of bioactive, sulfated fucosyl-polysaccharides found primarily in brown macroalgae (brown seaweeds). Quantitative assessment of endo-fucoidanase activity is critical for characterizing endo-fucoidanase kinetics and for comparing the action of different endo-fucoidanases on different types of fucoidans. However, the current state-of-the-art endo-fucoidanase assay consists of a qualitative assessment based on Carbohydrate-Polyacrylamide Gel Electrophoresis. Here, we report a new quantitative endo-fucoidanase assay based on real time spectral evolution profiling of changes in substrate and product during endo-fucoidanase action using Fourier Transform InfraRed spectroscopy (FTIR) combined with Parallel Factor Analysis (PARAFAC). The FTIR-PARAFAC assay was validated by monitoring the reaction progress of three different microbial endo-fucoidanase enzymes, FcnAΔ229, FFA2 and Fhf1Δ470, on two different fucoidan substrates. The substrates were purified from the brown macroalgae Fucus evanescens and Fucus vesiculosus, respectively. The evolution profiling showed that the strongest spectral change of the fucoidans during enzymatic depolymerization occurred in the spectral range 1220-1260 cm-1, but the profiles differed depending on the substrate and the enzyme used. Spectral changes within 1220-1260 cm-1 are in agreement with the enzymatic depolymerization inducing signature changes in the mid-infrared absorption of sulfated fucosyls as sulfate ester bonds and C-O stretching vibrations absorb in this spectral region. Based on the data obtained, we also introduce an activity unit for endo-fucoidanases: One endo-fucoidanase Unit, Uf, is the amount of enzyme able to catalyze a change in the FTIR-PARAFAC score by 0.01 during 498 s of reaction (8.3 min) on 20 g/L pure fucoidan from F. evanescens at 42 °C, pH 7.4, 100 mM NaCl and 10 mM CaCl2. This new quantitative endo-fucoidanase assay can pave the way for better kinetic characterizations as well as novel explorations of endo-fucoidanases.
Collapse
Affiliation(s)
- Vy Ha Nguyen Tran
- Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong Street, Nhatrang 650000, Vietnam
| | - Valentina Perna
- Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Maria Dalgaard Mikkelsen
- Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Thuan Thi Nguyen
- Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong Street, Nhatrang 650000, Vietnam
| | - Vo Thi Dieu Trang
- Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong Street, Nhatrang 650000, Vietnam
| | - Andreas Baum
- Section for Statistics and Data Analysis, Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Hang Thi Thuy Cao
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong Street, Nhatrang 650000, Vietnam
| | - Tran Thi Thanh Van
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong Street, Nhatrang 650000, Vietnam
| | - Anne S Meyer
- Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
8
|
Tran VHN, Nguyen TT, Meier S, Holck J, Cao HTT, Van TTT, Meyer AS, Mikkelsen MD. The Endo-α(1,3)-Fucoidanase Mef2 Releases Uniquely Branched Oligosaccharides from Saccharina latissima Fucoidans. Mar Drugs 2022; 20:305. [PMID: 35621956 PMCID: PMC9147238 DOI: 10.3390/md20050305] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/21/2022] [Accepted: 04/24/2022] [Indexed: 02/05/2023] Open
Abstract
Fucoidans are complex bioactive sulfated fucosyl-polysaccharides primarily found in brown macroalgae. Endo-fucoidanases catalyze the specific hydrolysis of α-L-fucosyl linkages in fucoidans and can be utilized to tailor-make fucoidan oligosaccharides and elucidate new structural details of fucoidans. In this study, an endo-α(1,3)-fucoidanase encoding gene, Mef2, from the marine bacterium Muricauda eckloniae, was cloned, and the Mef2 protein was functionally characterized. Based on the primary sequence, Mef2 was suggested to belong to the glycosyl hydrolase family 107 (GH107) in the Carbohydrate Active enZyme database (CAZy). The Mef2 fucoidanase showed maximal activity at pH 8 and 35 °C, although it could tolerate temperatures up to 50 °C. Ca2+ was shown to increase the melting temperature from 38 to 44 °C and was furthermore required for optimal activity of Mef2. The substrate specificity of Mef2 was investigated, and Fourier transform infrared spectroscopy (FTIR) was used to determine the enzymatic activity (Units per μM enzyme: Uf/μM) of Mef2 on two structurally different fucoidans, showing an activity of 1.2 × 10-3 Uf/μM and 3.6 × 10-3 Uf/μM on fucoidans from Fucus evanescens and Saccharina latissima, respectively. Interestingly, Mef2 was identified as the first described fucoidanase active on fucoidans from S. latissima. The fucoidan oligosaccharides released by Mef2 consisted of a backbone of α(1,3)-linked fucosyl residues with unique and novel α(1,4)-linked fucosyl branches, not previously identified in fucoidans from S. latissima.
Collapse
Affiliation(s)
- Vy Ha Nguyen Tran
- Section for Protein Chemistry and Enzyme Technology, DTU Bioengineering-Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (V.H.N.T.); (T.T.N.); (J.H.)
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong Street, Nhatrang 650000, Vietnam; (H.T.T.C.); (T.T.T.V.)
| | - Thuan Thi Nguyen
- Section for Protein Chemistry and Enzyme Technology, DTU Bioengineering-Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (V.H.N.T.); (T.T.N.); (J.H.)
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong Street, Nhatrang 650000, Vietnam; (H.T.T.C.); (T.T.T.V.)
| | - Sebastian Meier
- Department of Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark;
| | - Jesper Holck
- Section for Protein Chemistry and Enzyme Technology, DTU Bioengineering-Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (V.H.N.T.); (T.T.N.); (J.H.)
| | - Hang Thi Thuy Cao
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong Street, Nhatrang 650000, Vietnam; (H.T.T.C.); (T.T.T.V.)
| | - Tran Thi Thanh Van
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong Street, Nhatrang 650000, Vietnam; (H.T.T.C.); (T.T.T.V.)
| | - Anne S. Meyer
- Section for Protein Chemistry and Enzyme Technology, DTU Bioengineering-Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (V.H.N.T.); (T.T.N.); (J.H.)
| | - Maria Dalgaard Mikkelsen
- Section for Protein Chemistry and Enzyme Technology, DTU Bioengineering-Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (V.H.N.T.); (T.T.N.); (J.H.)
| |
Collapse
|
9
|
Trang VTD, Mikkelsen MD, Vuillemin M, Meier S, Cao HTT, Muschiol J, Perna V, Nguyen TT, Tran VHN, Holck J, Van TTT, Khanh HHN, Meyer AS. The Endo-α(1,4) Specific Fucoidanase Fhf2 From Formosa haliotis Releases Highly Sulfated Fucoidan Oligosaccharides. FRONTIERS IN PLANT SCIENCE 2022; 13:823668. [PMID: 35185990 PMCID: PMC8847386 DOI: 10.3389/fpls.2022.823668] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Fucoidanases are endo-fucoidanases (also known as endo-fucanases) that catalyze hydrolysis of α-glycosidic linkages in fucoidans, a family of sulfated fucose-rich polysaccharides primarily found in the cell walls of brown seaweeds. Fucoidanases are promising tools for producing bioactive fucoidan oligosaccharides for a range of biomedical applications. High sulfation degree has been linked to high bioactivity of fucoidans. In this study, a novel fucoidanase, Fhf2, was identified in the genome of the aerobic, Gram-negative marine bacterium Formosa haliotis. Fhf2 was found to share sequence similarity to known endo-α(1,4)-fucoidanases (EC 3.2.1.212) from glycoside hydrolase family 107. A C-terminal deletion mutant Fhf2∆484, devoid of 484 amino acids at the C-terminus, with a molecular weight of approximately 46 kDa, was constructed and found to be more stable than the full-length Fhf2 protein. Fhf2∆484 showed endo-fucoidanase activity on fucoidans from different seaweed species including Fucus evanescens, Fucus vesiculosus, Sargassum mcclurei, and Sargassum polycystum. The highest activity was observed on fucoidan from F. evanescens. The Fhf2∆484 enzyme was active at 20-45°C and at pH 6-9 and had optimal activity at 37°C and pH 8. Additionally, Fhf2∆484 was found to be calcium-dependent. NMR analysis showed that Fhf2∆484 catalyzed hydrolysis of α(1,4) linkages between L-fucosyl moieties sulfated on C2 (similar to Fhf1 from Formosa haliotis), but Fhf2∆484 in addition released oligosaccharides containing a substantial amount of 2,4-disulfated fucose residues. The data thus suggest that the Fhf2∆484 enzyme could be a valuable candidate for producing highly sulfated oligosaccharides applicable for fucoidan bioactivity investigations.
Collapse
Affiliation(s)
- Vo Thi Dieu Trang
- Protein Chemistry and Enzyme Technology Section, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, Nha Trang, Vietnam
| | - Maria Dalgaard Mikkelsen
- Protein Chemistry and Enzyme Technology Section, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Marlene Vuillemin
- Protein Chemistry and Enzyme Technology Section, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sebastian Meier
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Hang Thi Thuy Cao
- Protein Chemistry and Enzyme Technology Section, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, Nha Trang, Vietnam
| | - Jan Muschiol
- Protein Chemistry and Enzyme Technology Section, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
- Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Valentina Perna
- Protein Chemistry and Enzyme Technology Section, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Thuan Thi Nguyen
- Protein Chemistry and Enzyme Technology Section, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, Nha Trang, Vietnam
| | - Vy Ha Nguyen Tran
- Protein Chemistry and Enzyme Technology Section, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, Nha Trang, Vietnam
| | - Jesper Holck
- Protein Chemistry and Enzyme Technology Section, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Tran Thi Thanh Van
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, Nha Trang, Vietnam
| | - Huynh Hoang Nhu Khanh
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, Nha Trang, Vietnam
| | - Anne S. Meyer
- Protein Chemistry and Enzyme Technology Section, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
10
|
Marine microbial enzymes for the production of algal oligosaccharides and its bioactive potential for application as nutritional supplements. Folia Microbiol (Praha) 2022; 67:175-191. [PMID: 34997524 DOI: 10.1007/s12223-021-00943-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/20/2021] [Indexed: 01/02/2023]
Abstract
Marine macroalgae have a very high carbohydrate content due to complex algal polysaccharides (APS) like agar, alginate, and ulvan in their cell wall. Despite numerous reports on their biomedical properties, their hydrocolloid nature limits their applications. Algal oligosaccharides (AOS), which are hydrolyzed forms of complex APS, are gaining importance due to their low molecular weight, biocompatibility, bioactivities, safety, and solubility in water that makes it a lucrative alternative. The AOS produced through enzymatic hydrolysis using microbial enzymes have far-reaching applications because of its stereospecific nature. Identification and characterization of novel microorganisms producing APS hydrolyzing enzymes are the major bottlenecks for the efficient production of AOS. This review will discuss the marine microbial enzymes identified for AOS production and the bioactive potential of enzymatically produced AOS. This can improve our understanding of the biotechnological potential of microbial enzymes for the production of AOS and facilitate the sustainable utilization of algal biomass. Enzymatically produced AOS are shown to have bioactivities such as antioxidant, antiglycemic, prebiotic, immunomodulation, antiobesity or antihypercholesterolemia, anti-inflammatory, anticancer, and antimicrobial activity. The myriad of health benefits provided by the AOS is the need of the hour as there is an alarming increase in physiological disorders among a wide range of the global population.
Collapse
|
11
|
A novel thermostable prokaryotic fucoidan active sulfatase PsFucS1 with an unusual quaternary hexameric structure. Sci Rep 2021; 11:19523. [PMID: 34593864 PMCID: PMC8484680 DOI: 10.1038/s41598-021-98588-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 09/06/2021] [Indexed: 12/20/2022] Open
Abstract
Fucoidans are sulfated, fucose-rich marine polysaccharides primarily found in cell walls of brown seaweeds (macroalgae). Fucoidans are known to possess beneficial bioactivities depending on their structure and sulfation degree. Here, we report the first functional characterization and the first crystal structure of a prokaryotic sulfatase, PsFucS1, belonging to sulfatase subfamily S1_13, able to release sulfate from fucoidan oligosaccharides. PsFucS1 was identified in the genome of a Pseudoalteromonas sp. isolated from sea cucumber gut. PsFucS1 (57 kDa) is Ca2+ dependent and has an unusually high optimal temperature (68 °C) and thermostability. Further, the PsFucS1 displays a unique quaternary hexameric structure comprising a tight trimeric dimer complex. The structural data imply that this hexamer formation results from an uncommon interaction of each PsFucS1 monomer that is oriented perpendicular to the common dimer interface (~ 1500 Å2) that can be found in analogous sulfatases. The uncommon interaction involves interfacing (1246 Å2) through a bundle of α-helices in the N-terminal domain to form a trimeric ring structure. The high thermostability may be related to this unusual quaternary hexameric structure formation that is suggested to represent a novel protein thermostabilization mechanism.
Collapse
|
12
|
Zhu C, Liu Z, Ren L, Jiao S, Zhang X, Wang Q, Li Z, Du Y, Li JJ. Overexpression and biochemical characterization of a truncated endo-α (1 → 3)-fucoidanase from alteromonas sp. SN-1009. Food Chem 2021; 353:129460. [PMID: 33725543 DOI: 10.1016/j.foodchem.2021.129460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 12/23/2022]
Abstract
Endo-fucoidanases are important in structural analysis of fucoidans and preparation of fuco-oligosaccharides. However their enzymological properties and analysis of degradation products are scarcely investigated. Truncated endo-α (1 → 3)-fucoidanase Fda1 (tFda1B from Alteromonas sp. was overexpressed and characterized, showing highest activity at pH 7.0, 35 °C, and 1.0 M NaCl. Its Km and kcat were 3.88 ± 0.81 mg/mL and 0.82 ± 0.17 min-1. Fe3+ and Mn2+ enhanced activity by 100% and 19.5% respectively. Co2+ and Cu2+ completely inactivated tFda1B, whereas Ni2+, Mg2+, Zn2+, Pb2+, Ca2+, Ba2+ and Li+ decreased activity by 58.8%, 56.0%, 50.6%, 47.7%, 28.9%, 15.6% and 37.5%, respectively. Catalytic residues were identified through structure and sequence alignment, and confirmed by mutagenesis. Degradation products of Kjellmaniella crassifolia fucoidan by tFda1B were characterized by LC-ESI-MS/MS, confirming tFda1B belongs to endo-(1 → 3)-fucoidanases, and backbone of K. crassifolia fucoidan is 1 → 3 fucoside linkage. This endo-α (1 → 3)-fucoidanase would be useful for elucidating fucoidan structures, and be used as a food enzyme.
Collapse
Affiliation(s)
- Chenlu Zhu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; National Key Laboratory of Biochemical Engineering, National Engineering Research Center for Biotechnology (Beijing), Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Zebin Liu
- College of Life Sciences, Capital Normal University, Beijing 10048, China
| | - Lishi Ren
- National Key Laboratory of Biochemical Engineering, National Engineering Research Center for Biotechnology (Beijing), Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Siming Jiao
- National Key Laboratory of Biochemical Engineering, National Engineering Research Center for Biotechnology (Beijing), Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xuebing Zhang
- National Key Laboratory of Biochemical Engineering, National Engineering Research Center for Biotechnology (Beijing), Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Qiukuan Wang
- National R & D Branch Center for Seaweed Processing, Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
| | - Zhimin Li
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Yuguang Du
- National Key Laboratory of Biochemical Engineering, National Engineering Research Center for Biotechnology (Beijing), Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Jian-Jun Li
- National Key Laboratory of Biochemical Engineering, National Engineering Research Center for Biotechnology (Beijing), Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
13
|
Jagtap AS, Manohar CS. Overview on Microbial Enzymatic Production of Algal Oligosaccharides for Nutraceutical Applications. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:159-176. [PMID: 33763808 DOI: 10.1007/s10126-021-10027-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Global requirement for algal foods is increasing, as they are progressively consumed for its nutrition and health. Macroalgae is a proven source of metabolites, proteins, pigments, bioactive compounds, and algal polysaccharides. The unique polysaccharides such as agar, carrageenan, porphyran, alginate, fucoidan, laminarin, and ulvan are known for its wide range of bioactivities and extensively used for applications from tissue engineering to drug delivery. However, there are few limitations due to its high molecular size, low compatibility, and hydrocolloid nature. Hence, the enzymatically produced algal oligosaccharides have drawn tremendous attention due to its green synthesis, solubility, and lower molecular size. They are reported to have bioactivities including antioxidant, antiglycemic, immunostimulatory, anti-inflammatory, and prebiotic activities, which can be used in the healthcare and nutraceutical industry for the manufacture of functional foods and dietary supplements. However, identification of potential microorganisms, producing polysaccharide hydrolyzing enzymes, remains a major bottle neck for efficient utilization of bioactive algal oligosaccharides. This review summarizes the recent developments in the identification and characterization of microbial enzymes for the production of bioactive algal oligosaccharides. This can improve our understanding of bioactive algal oligosaccharides and pave way for efficient utilization of macroalgae to prevent various chronic diseases.
Collapse
Affiliation(s)
- Ashok S Jagtap
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India
- School of Earth, Ocean and Atmospheric Sciences, Goa University, Taleigao Plateau, Goa, 403206, India
| | - Cathrine S Manohar
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India.
| |
Collapse
|
14
|
Zueva A, Silchenko A, Rasin A, Kusaykin M, Usoltseva R, Kalinovsky A, Kurilenko V, Zvyagintseva T, Thinh P, Ermakova S. Expression and biochemical characterization of two recombinant fucoidanases from the marine bacterium Wenyingzhuangia fucanilytica CZ1127T. Int J Biol Macromol 2020; 164:3025-3037. [DOI: 10.1016/j.ijbiomac.2020.08.131] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/30/2020] [Accepted: 08/16/2020] [Indexed: 12/16/2022]
|
15
|
Zayed A, El-Aasr M, Ibrahim ARS, Ulber R. Fucoidan Characterization: Determination of Purity and Physicochemical and Chemical Properties. Mar Drugs 2020; 18:E571. [PMID: 33228066 PMCID: PMC7699409 DOI: 10.3390/md18110571] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022] Open
Abstract
Fucoidans are marine sulfated biopolysaccharides that have heterogenous and complicated chemical structures. Various sugar monomers, glycosidic linkages, molecular masses, branching sites, and sulfate ester pattern and content are involved within their backbones. Additionally, sources, downstream processes, and geographical and seasonal factors show potential effects on fucoidan structural characteristics. These characteristics are documented to be highly related to fucoidan potential activities. Therefore, numerous chemical qualitative and quantitative determinations and structural elucidation methods are conducted to characterize fucoidans regarding their physicochemical and chemical features. Characterization of fucoidan polymers is considered a bottleneck for further biological and industrial applications. Consequently, the obtained results may be related to different activities, which could be improved afterward by further functional modifications. The current article highlights the different spectrometric and nonspectrometric methods applied for the characterization of native fucoidans, including degree of purity, sugar monomeric composition, sulfation pattern and content, molecular mass, and glycosidic linkages.
Collapse
Affiliation(s)
- Ahmed Zayed
- Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany;
- Department of Pharmacognosy, Tanta University, College of Pharmacy, El-Guish Street, Tanta 31527, Egypt; (M.E.-A.); (A.-R.S.I.)
| | - Mona El-Aasr
- Department of Pharmacognosy, Tanta University, College of Pharmacy, El-Guish Street, Tanta 31527, Egypt; (M.E.-A.); (A.-R.S.I.)
| | - Abdel-Rahim S. Ibrahim
- Department of Pharmacognosy, Tanta University, College of Pharmacy, El-Guish Street, Tanta 31527, Egypt; (M.E.-A.); (A.-R.S.I.)
| | - Roland Ulber
- Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany;
| |
Collapse
|
16
|
Vuillemin M, Silchenko AS, Cao HTT, Kokoulin MS, Trang VTD, Holck J, Ermakova SP, Meyer AS, Mikkelsen MD. Functional Characterization of a New GH107 Endo-α-(1,4)-Fucoidanase from the Marine Bacterium Formosa haliotis. Mar Drugs 2020; 18:E562. [PMID: 33213084 PMCID: PMC7698502 DOI: 10.3390/md18110562] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/05/2020] [Accepted: 11/11/2020] [Indexed: 12/27/2022] Open
Abstract
Fucoidans from brown macroalgae are sulfated fucose-rich polysaccharides, that have several beneficial biological activities, including anti-inflammatory and anti-tumor effects. Controlled enzymatic depolymerization of the fucoidan backbone can help produce homogeneous, defined fucoidan products for structure-function research and pharmaceutical uses. However, only a few endo-fucoidanases have been described. This article reports the genome-based discovery, recombinant expression in Escherichia coli, stabilization, and functional characterization of a new bacterial endo-α-(1,4)-fucoidanase, Fhf1, from Formosa haliotis. Fhf1 catalyzes the cleavage of α-(1,4)-glycosidic linkages in fucoidans built of alternating α-(1,3)-/α-(1,4)-linked l-fucopyranosyl sulfated at C2. The native Fhf1 is 1120 amino acids long and belongs to glycoside hydrolase (GH) family 107. Deletion of the signal peptide and a 470 amino acid long C-terminal stretch led to the recombinant expression of a robust, minimized enzyme, Fhf1Δ470 (71 kDa). Fhf1Δ470 has optimal activity at pH 8, 37-40 °C, can tolerate up to 500 mM NaCl, and requires the presence of divalent cations, either Ca2+, Mn2+, Zn2+ or Ni2+, for maximal activity. This new enzyme has the potential to serve the need for controlled enzymatic fucoidan depolymerization to produce bioactive sulfated fucoidan oligomers.
Collapse
Affiliation(s)
- Marlene Vuillemin
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs Lyngby, Denmark; (M.V.); (V.T.D.T.); (J.H.); (A.S.M.)
| | - Artem S. Silchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 159, Prospect 100-let Vladivostoku, 690022 Vladivostok, Russia; (A.S.S.); (M.S.K); (S.P.E.)
| | - Hang Thi Thuy Cao
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong Street, Nhatrang 650000, Vietnam;
| | - Maxim S. Kokoulin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 159, Prospect 100-let Vladivostoku, 690022 Vladivostok, Russia; (A.S.S.); (M.S.K); (S.P.E.)
| | - Vo Thi Dieu Trang
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs Lyngby, Denmark; (M.V.); (V.T.D.T.); (J.H.); (A.S.M.)
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong Street, Nhatrang 650000, Vietnam;
| | - Jesper Holck
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs Lyngby, Denmark; (M.V.); (V.T.D.T.); (J.H.); (A.S.M.)
| | - Svetlana P. Ermakova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 159, Prospect 100-let Vladivostoku, 690022 Vladivostok, Russia; (A.S.S.); (M.S.K); (S.P.E.)
| | - Anne S. Meyer
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs Lyngby, Denmark; (M.V.); (V.T.D.T.); (J.H.); (A.S.M.)
| | - Maria Dalgaard Mikkelsen
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs Lyngby, Denmark; (M.V.); (V.T.D.T.); (J.H.); (A.S.M.)
| |
Collapse
|
17
|
Co-creating Science Commercialization Opportunities for Blue Biotechnologies: The FucoSan Project. SUSTAINABILITY 2020. [DOI: 10.3390/su12145578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We report the experience of the FucoSan InterReg project that had the ambition to generate commercialization opportunities for biotechnology research in a marine environment. Fucoidan, a promising biomarine polysaccharide extracted from seaweed, offers a broad array of potential applications; however, the supporting innovation value chain is still under development. We explore how the use of business modelling tools can contribute to building a shared understanding of commercialization opportunities across a diverse range of research and development actors. We analyze data (interviews, workshops, and surveys) from a German-Danish network of actors involved in the FucoSan InterReg project to identify how the tools contribute to setting up a base to support future activities across a potential innovation value chain. The results point towards the direct and indirect positive effects of engaging in the co-creation of a shared understanding of the functionality and possibilities of promising biomarine products. The findings support the idea that interdisciplinary and multilateral interactions help actors to identify the necessary connections and interdependencies to build a sustainability-driven innovation value chain.
Collapse
|
18
|
Zeuner B, Meyer AS. Enzymatic transfucosylation for synthesis of human milk oligosaccharides. Carbohydr Res 2020; 493:108029. [DOI: 10.1016/j.carres.2020.108029] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/28/2022]
|
19
|
Nguyen TT, Mikkelsen MD, Tran VHN, Trang VTD, Rhein-Knudsen N, Holck J, Rasin AB, Cao HTT, Van TTT, Meyer AS. Enzyme-Assisted Fucoidan Extraction from Brown Macroalgae Fucus distichus subsp. evanescens and Saccharina latissima. Mar Drugs 2020; 18:E296. [PMID: 32498331 PMCID: PMC7344474 DOI: 10.3390/md18060296] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022] Open
Abstract
Fucoidans from brown macroalgae (brown seaweeds) have different structures and many interesting bioactivities. Fucoidans are classically extracted from brown seaweeds by hot acidic extraction. Here, we report a new targeted enzyme-assisted methodology for fucoidan extraction from brown seaweeds. This enzyme-assisted extraction protocol involves a one-step combined use of a commercial cellulase preparation (Cellic®CTec2) and an alginate lyase from Sphingomonas sp. (SALy), reaction at pH 6.0, 40 °C, removal of non-fucoidan polysaccharides by Ca2+ precipitation, and ethanol-precipitation of crude fucoidan. The workability of this method is demonstrated for fucoidan extraction from Fucus distichus subsp. evanescens (basionym Fucus evanescens) and Saccharina latissima as compared with mild acidic extraction. The crude fucoidans resulting directly from the enzyme-assisted method contained considerable amounts of low molecular weight alginate, but this residual alginate was effectively removed by an additional ion-exchange chromatographic step to yield pure fucoidans (as confirmed by 1H NMR). The fucoidan yields that were obtained by the enzymatic method were comparable to the chemically extracted yields for both F. evanescens and S. latissima, but the molecular sizes of the fucoidans were significantly larger with enzyme-assisted extraction. The molecular weight distribution of the fucoidan fractions was 400 to 800 kDa for F. evanescens and 300 to 800 kDa for S. latissima, whereas the molecular weights of the corresponding chemically extracted fucoidans from these seaweeds were 10-100 kDa and 50-100 kDa, respectively. Enzyme-assisted extraction represents a new gentle strategy for fucoidan extraction and it provides new opportunities for obtaining high yields of native fucoidan structures from brown macroalgae.
Collapse
Affiliation(s)
- Thuan Thi Nguyen
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 221, 2800 Kongens Lyngby, Denmark; (T.T.N.); (V.H.N.T.); (V.T.D.T.); (N.R.-K.); (J.H.); (A.S.M.)
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong Street, Nhatrang 650000, Vietnam; (H.T.T.C.); (T.T.T.V.)
| | - Maria Dalgaard Mikkelsen
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 221, 2800 Kongens Lyngby, Denmark; (T.T.N.); (V.H.N.T.); (V.T.D.T.); (N.R.-K.); (J.H.); (A.S.M.)
| | - Vy Ha Nguyen Tran
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 221, 2800 Kongens Lyngby, Denmark; (T.T.N.); (V.H.N.T.); (V.T.D.T.); (N.R.-K.); (J.H.); (A.S.M.)
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong Street, Nhatrang 650000, Vietnam; (H.T.T.C.); (T.T.T.V.)
| | - Vo Thi Dieu Trang
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 221, 2800 Kongens Lyngby, Denmark; (T.T.N.); (V.H.N.T.); (V.T.D.T.); (N.R.-K.); (J.H.); (A.S.M.)
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong Street, Nhatrang 650000, Vietnam; (H.T.T.C.); (T.T.T.V.)
| | - Nanna Rhein-Knudsen
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 221, 2800 Kongens Lyngby, Denmark; (T.T.N.); (V.H.N.T.); (V.T.D.T.); (N.R.-K.); (J.H.); (A.S.M.)
| | - Jesper Holck
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 221, 2800 Kongens Lyngby, Denmark; (T.T.N.); (V.H.N.T.); (V.T.D.T.); (N.R.-K.); (J.H.); (A.S.M.)
| | - Anton B. Rasin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 159, Prospect 100-let Vladivostoku, Vladivostok 690022, Russia;
| | - Hang Thi Thuy Cao
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong Street, Nhatrang 650000, Vietnam; (H.T.T.C.); (T.T.T.V.)
| | - Tran Thi Thanh Van
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong Street, Nhatrang 650000, Vietnam; (H.T.T.C.); (T.T.T.V.)
| | - Anne S. Meyer
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 221, 2800 Kongens Lyngby, Denmark; (T.T.N.); (V.H.N.T.); (V.T.D.T.); (N.R.-K.); (J.H.); (A.S.M.)
| |
Collapse
|
20
|
Claverie M, McReynolds C, Petitpas A, Thomas M, Fernandes SCM. Marine-Derived Polymeric Materials and Biomimetics: An Overview. Polymers (Basel) 2020; 12:E1002. [PMID: 32357448 PMCID: PMC7285066 DOI: 10.3390/polym12051002] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 02/01/2023] Open
Abstract
The review covers recent literature on the ocean as both a source of biotechnological tools and as a source of bio-inspired materials. The emphasis is on marine biomacromolecules namely hyaluronic acid, chitin and chitosan, peptides, collagen, enzymes, polysaccharides from algae, and secondary metabolites like mycosporines. Their specific biological, physicochemical and structural properties together with relevant applications in biocomposite materials have been included. Additionally, it refers to the marine organisms as source of inspiration for the design and development of sustainable and functional (bio)materials. Marine biological functions that mimic reef fish mucus, marine adhesives and structural colouration are explained.
Collapse
Affiliation(s)
- Marion Claverie
- E2S UPPA, CNRS, IPREM, Universite de Pau et des Pays de l’Adour, 64600 Anglet, France; (M.C.); (C.M.); (A.P.); (M.T.)
| | - Colin McReynolds
- E2S UPPA, CNRS, IPREM, Universite de Pau et des Pays de l’Adour, 64600 Anglet, France; (M.C.); (C.M.); (A.P.); (M.T.)
| | - Arnaud Petitpas
- E2S UPPA, CNRS, IPREM, Universite de Pau et des Pays de l’Adour, 64600 Anglet, France; (M.C.); (C.M.); (A.P.); (M.T.)
| | - Martin Thomas
- E2S UPPA, CNRS, IPREM, Universite de Pau et des Pays de l’Adour, 64600 Anglet, France; (M.C.); (C.M.); (A.P.); (M.T.)
| | - Susana C. M. Fernandes
- E2S UPPA, CNRS, IPREM, Universite de Pau et des Pays de l’Adour, 64600 Anglet, France; (M.C.); (C.M.); (A.P.); (M.T.)
- Department of Chemistry—Angstrom Laboratory, Polymer Chemistry, Uppsala University, Lagerhyddsvagen 1, 75120 Uppsala, Sweden
| |
Collapse
|
21
|
Zayed A, Ulber R. Fucoidans: Downstream Processes and Recent Applications. Mar Drugs 2020; 18:E170. [PMID: 32197549 PMCID: PMC7142712 DOI: 10.3390/md18030170] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/14/2020] [Accepted: 03/15/2020] [Indexed: 02/06/2023] Open
Abstract
Fucoidans are multifunctional marine macromolecules that are subjected to numerous and various downstream processes during their production. These processes were considered the most important abiotic factors affecting fucoidan chemical skeletons, quality, physicochemical properties, biological properties and industrial applications. Since a universal protocol for fucoidans production has not been established yet, all the currently used processes were presented and justified. The current article complements our previous articles in the fucoidans field, provides an updated overview regarding the different downstream processes, including pre-treatment, extraction, purification and enzymatic modification processes, and shows the recent non-traditional applications of fucoidans in relation to their characters.
Collapse
Affiliation(s)
- Ahmed Zayed
- Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany;
- Department of Pharmacognosy, Tanta University, College of Pharmacy, El Guish Street, Tanta 31527, Egypt
| | - Roland Ulber
- Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany;
| |
Collapse
|
22
|
Kuznetsova TA, Smolina TP, Makarenkova ID, Ivanushko LA, Persiyanova EV, Ermakova SP, Silchenko AS, Zaporozhets TS, Besednova NN, Fedyanina LN, Kryzhanovsky SP. Immunoadjuvant Activity of Fucoidans from the Brown Alga Fucus evanescens. Mar Drugs 2020; 18:E155. [PMID: 32168741 PMCID: PMC7143619 DOI: 10.3390/md18030155] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 11/24/2022] Open
Abstract
Thе study presents the results of a comparative evaluation of the effect of structural modifications of fucoidans from the brown alga Fucus evanescens (native, highly purified рroduct of fucoidan enzymatic hydrolysis, a new regular 1→3;1→4-α-L-fucan, sulphated mainly at C2 and acetylated at C4 of the fucose residue) on the effector functions of innate and adaptive immunity cells in vitro and in vivo. Using flow cytometry, we found that all examined fucoidans induce the maturation of dendritic cells, enhance the ability of neutrophils to migrate and adhere, activate monocytes and enhance their antigen-presenting functions, and increase the cytotoxic potential of natural killers. Fucoidans increase the production of hepatitis B virus (HBs) specific IgG and cytokine Th1 (IFN-γ, TNF-α) and Th2 (IL-4) profiles in vivo. The data obtained suggest that in vitro and in vivo adjuvant effects of the products of fucoidan enzymatic hydrolysis with regular structural characteristics are comparable to those of the native fucoidan. Based on these data, the products of fucoidan enzymatic hydrolysis can be considered as an effective and safe candidate adjuvant to improve the efficacy of prophylactic and therapeutic vaccines.
Collapse
Affiliation(s)
- Tatyana A. Kuznetsova
- Somov Institute of Epidemiology and Microbiology, Vladivostok 690087, Russia; (T.P.S.); (I.D.M.); (L.A.I.); (E.V.P.); (T.S.Z.); (N.N.B.)
| | - Tatyana P. Smolina
- Somov Institute of Epidemiology and Microbiology, Vladivostok 690087, Russia; (T.P.S.); (I.D.M.); (L.A.I.); (E.V.P.); (T.S.Z.); (N.N.B.)
| | - Ilona D. Makarenkova
- Somov Institute of Epidemiology and Microbiology, Vladivostok 690087, Russia; (T.P.S.); (I.D.M.); (L.A.I.); (E.V.P.); (T.S.Z.); (N.N.B.)
| | - Lydmila A. Ivanushko
- Somov Institute of Epidemiology and Microbiology, Vladivostok 690087, Russia; (T.P.S.); (I.D.M.); (L.A.I.); (E.V.P.); (T.S.Z.); (N.N.B.)
| | - Elena V. Persiyanova
- Somov Institute of Epidemiology and Microbiology, Vladivostok 690087, Russia; (T.P.S.); (I.D.M.); (L.A.I.); (E.V.P.); (T.S.Z.); (N.N.B.)
| | - Svetlana P. Ermakova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Vladivostok 690022, Russia; (S.P.E.); (A.S.S.)
| | - Artem S. Silchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Vladivostok 690022, Russia; (S.P.E.); (A.S.S.)
| | - Tatyana S. Zaporozhets
- Somov Institute of Epidemiology and Microbiology, Vladivostok 690087, Russia; (T.P.S.); (I.D.M.); (L.A.I.); (E.V.P.); (T.S.Z.); (N.N.B.)
| | - Natalya N. Besednova
- Somov Institute of Epidemiology and Microbiology, Vladivostok 690087, Russia; (T.P.S.); (I.D.M.); (L.A.I.); (E.V.P.); (T.S.Z.); (N.N.B.)
| | - Lydmila N. Fedyanina
- Far Eastern Federal University, School of Biomedicine, Vladivostok, 690922, Russia; (L.N.F.); (S.P.K.)
| | - Sergey P. Kryzhanovsky
- Far Eastern Federal University, School of Biomedicine, Vladivostok, 690922, Russia; (L.N.F.); (S.P.K.)
| |
Collapse
|
23
|
Study on Absorption Mechanism and Tissue Distribution of Fucoidan. Molecules 2020; 25:molecules25051087. [PMID: 32121122 PMCID: PMC7179197 DOI: 10.3390/molecules25051087] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 12/16/2022] Open
Abstract
Fucoidan exhibits several pharmacological activities and is characterized by high safety and the absence of toxic side effects. However, the absorption of fucoidan is not well-characterized. In the present study, fucoidan were labeled with fluorescein isothiocyanate (FITC) and their ability to traverse a monolayer of Caco-2 cells was examined. The apparent permeability coefficients (Papp × 10−6) of FITC-labeled fucoidan (FITC-fucoidan) were 26.23, 20.15, 17.93, 16.11 cm/sec, respectively, at the concentration of 10 μg/mL at 0.5, 1, 1.5 and 2 h. The absorption of FITC-fucoidan was suppressed by inhibitors of clathrin-mediated endocytosis, chlorpromazine, NH4Cl, and Dynasore; the inhibition rates were 84.24%, 74.61%, and 63.94%, respectively. This finding suggested that clathrin-mediated endocytosis was involved in fucoidan transport. Finally, tissue distribution of FITC-fucoidan was studied in vivo after injection of 50 mg/kg body weight into the tail vein of mice. The results showed that FITC-fucoidan targeted kidney and liver, reaching concentrations of 1092.31 and 284.27 μg/g respectively after 0.5 h. In summary, the present work identified the mechanism of absorption of fucoidan and documented its tissue distribution, providing a theoretical basis for the future development of fucoidan applications.
Collapse
|
24
|
Torres M, Flórez-Fernández N, Simón-Vázquez R, Giménez-Abián J, Díaz J, González-Fernández Á, Domínguez H. Fucoidans: The importance of processing on their anti-tumoral properties. ALGAL RES 2020. [DOI: 10.1016/j.algal.2019.101748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Pilgaard B, Wilkens C, Herbst FA, Vuillemin M, Rhein-Knudsen N, Meyer AS, Lange L. Proteomic enzyme analysis of the marine fungus Paradendryphiella salina reveals alginate lyase as a minimal adaptation strategy for brown algae degradation. Sci Rep 2019; 9:12338. [PMID: 31451726 PMCID: PMC6710412 DOI: 10.1038/s41598-019-48823-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/13/2019] [Indexed: 01/31/2023] Open
Abstract
We set out to investigate the genetic adaptations of the marine fungus Paradendryphiella salina CBS112865 for degradation of brown macroalgae. We performed whole genome and transcriptome sequencing and shotgun proteomic analysis of the secretome of P. salina grown on three species of brown algae and under carbon limitation. Genome comparison with closely related terrestrial fungi revealed that P. salina had a similar but reduced CAZyme profile relative to the terrestrial fungi except for the presence of three putative alginate lyases from Polysaccharide Lyase (PL) family 7 and a putative PL8 with similarity to ascomycete chondroitin AC lyases. Phylogenetic and homology analyses place the PL7 sequences amongst mannuronic acid specific PL7 proteins from marine bacteria. Recombinant expression, purification and characterization of one of the PL7 genes confirmed the specificity. Proteomic analysis of the P. salina secretome when growing on brown algae, revealed the PL7 and PL8 enzymes abundantly secreted together with enzymes necessary for degradation of laminarin, cellulose, lipids and peptides. Our findings indicate that the basic CAZyme repertoire of saprobic and plant pathogenic ascomycetes, with the addition of PL7 alginate lyases, provide P. salina with sufficient enzymatic capabilities to degrade several types of brown algae polysaccharides.
Collapse
Affiliation(s)
- Bo Pilgaard
- Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark.
| | - Casper Wilkens
- Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Florian-Alexander Herbst
- Center for Microbial Communities, Department of Chemistry and Bioscience Aalborg University, Aalborg, Denmark
| | - Marlene Vuillemin
- Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Nanna Rhein-Knudsen
- Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Anne S Meyer
- Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Lene Lange
- BioEconomy, Research & Advisory, Copenhagen, Denmark
| |
Collapse
|
26
|
Zeuner B, Teze D, Muschiol J, Meyer AS. Synthesis of Human Milk Oligosaccharides: Protein Engineering Strategies for Improved Enzymatic Transglycosylation. Molecules 2019; 24:E2033. [PMID: 31141914 PMCID: PMC6600218 DOI: 10.3390/molecules24112033] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/24/2019] [Accepted: 05/26/2019] [Indexed: 12/18/2022] Open
Abstract
Human milk oligosaccharides (HMOs) signify a unique group of oligosaccharides in breast milk, which is of major importance for infant health and development. The functional benefits of HMOs create an enormous impetus for biosynthetic production of HMOs for use as additives in infant formula and other products. HMO molecules can be synthesized chemically, via fermentation, and by enzymatic synthesis. This treatise discusses these different techniques, with particular focus on harnessing enzymes for controlled enzymatic synthesis of HMO molecules. In order to foster precise and high-yield enzymatic synthesis, several novel protein engineering approaches have been reported, mainly concerning changing glycoside hydrolases to catalyze relevant transglycosylations. The protein engineering strategies for these enzymes range from rationally modifying specific catalytic residues, over targeted subsite -1 mutations, to unique and novel transplantations of designed peptide sequences near the active site, so-called loop engineering. These strategies have proven useful to foster enhanced transglycosylation to promote different types of HMO synthesis reactions. The rationale of subsite -1 modification, acceptor binding site matching, and loop engineering, including changes that may alter the spatial arrangement of water in the enzyme active site region, may prove useful for novel enzyme-catalyzed carbohydrate design in general.
Collapse
Affiliation(s)
- Birgitte Zeuner
- Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs Lyngby, Denmark.
| | - David Teze
- Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs Lyngby, Denmark.
| | - Jan Muschiol
- Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs Lyngby, Denmark.
| | - Anne S Meyer
- Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs Lyngby, Denmark.
| |
Collapse
|