1
|
Song T, Han X, Jiang T, Pu X, Wei M, Zhu Y, Wu W. Chromatographic purification of the plasmin-like enzyme from clamworm (Perinereis aibuhitensis Grub) and its fibrinolytic activity by metal ions. FASEB J 2024; 38:e23747. [PMID: 38924451 DOI: 10.1096/fj.202400086rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/22/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
In this study, fibrinolytic protease was isolated and purified from Perinereis aibuhitensis Grub, and the extraction process was optimized. The properties of the enzyme, such as the amino acid composition, thermal stability, optimal temperature, and pH, were investigated. After detoxification, proteins collected from fresh Clamworm (Perinereis aibuhitensis Grub) were concentrated via ammonium sulfate precipitation. The crude protease was purified using gel filtration resin (Sephadex G-100), anion exchange resin (DEAE-Sepharose FF), and hydrophobic resin (Phenyl Sepharose 6FF). The molecular weight of the protease was determined by polyacrylamide gel electrophoresis (SDS-PAGE). The optimum temperature and optimum pH of the protease were determined. The activity of crude protease in the 40-60% salt-out section was the highest, reaching 467.53 U/mg. The optimal process for purifying crude protein involved the application of DEAE-Sepharose FF and Phenyl Sepharose 6FF, which resulted in the isolation of a single protease known as Asp60-D1-P1 with the highest fibrinolytic activity; additionally, the enzyme activity was measured at 3367.76 U/mg. Analysis by Native-PAGE and SDS-PAGE revealed that the molecular weight of Asp60-D1-P1 was 44.5 kDa, which consisted of two subunits with molecular weights of 6.5 and 37.8 kDa, respectively. The optimum temperature for Asp60-D1-P1 was 40°C, and the optimal pH was 8.0.
Collapse
Affiliation(s)
- Tuo Song
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Xinyuan Han
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Tingting Jiang
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- East China Sea Marine Biological Resources Engineering Technology Center, Changzhou, China
| | - Xinyi Pu
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Innovative Platform for Marine Biopharmaceutical Technology in Lingang New Area, Shanghai, China
| | - Mingjun Wei
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- East China Sea Marine Biological Resources Engineering Technology Center, Changzhou, China
| | - Yuping Zhu
- Department of Clinical Medicine, Naval Medical University, Shanghai, China
| | - Wenhui Wu
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Innovative Platform for Marine Biopharmaceutical Technology in Lingang New Area, Shanghai, China
| |
Collapse
|
2
|
Librizzi M, Martino C, Mauro M, Abruscato G, Arizza V, Vazzana M, Luparello C. Natural Anticancer Peptides from Marine Animal Species: Evidence from In Vitro Cell Model Systems. Cancers (Basel) 2023; 16:36. [PMID: 38201464 PMCID: PMC10777987 DOI: 10.3390/cancers16010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Anticancer peptides are short and structurally heterogeneous aminoacidic chains, which display selective cytotoxicity mostly against tumor cells, but not healthy cells, based on their different cell surface properties. Their anti-tumoral activity is carried out through interference with intracellular homeostasis, such as plasmalemma integrity, cell cycle control, enzymatic activities and mitochondrial functions, ultimately acting as angiogenesis-, drug resistance- and metastasis-inhibiting agents, immune stimulators, differentiation inducers and necrosis or extrinsic/intrinsic apoptosis promoters. The marine environment features an ever-growing level of biodiversity, and seas and oceans are poorly exploited mines in terms of natural products of biomedical interest. Adaptation processes to extreme and competitive environmental conditions led marine species to produce unique metabolites as a chemical strategy to allow inter-individual signalization and ensure survival against predators, infectious agents or UV radiation. These natural metabolites have found broad use in various applications in healthcare management, due to their anticancer, anti-angiogenic, anti-inflammatory and regeneration abilities. The aim of this review is to pick selected studies that report on the isolation of marine animal-derived peptides and the identification of their anticancer activity in in vitro cultures of cancer cells, and list them with respect to the taxonomical hierarchy of the source organism.
Collapse
Affiliation(s)
- Mariangela Librizzi
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy; (M.L.); (C.M.); (M.M.); (V.A.); (M.V.)
| | - Chiara Martino
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy; (M.L.); (C.M.); (M.M.); (V.A.); (M.V.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Manuela Mauro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy; (M.L.); (C.M.); (M.M.); (V.A.); (M.V.)
| | - Giulia Abruscato
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy; (M.L.); (C.M.); (M.M.); (V.A.); (M.V.)
| | - Vincenzo Arizza
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy; (M.L.); (C.M.); (M.M.); (V.A.); (M.V.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Mirella Vazzana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy; (M.L.); (C.M.); (M.M.); (V.A.); (M.V.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Claudio Luparello
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy; (M.L.); (C.M.); (M.M.); (V.A.); (M.V.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
3
|
Anticancer activity of D-LAK-120A, an antimicrobial peptide, in non-small cell lung cancer (NSCLC). Biochimie 2022; 201:7-17. [PMID: 35764196 DOI: 10.1016/j.biochi.2022.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/24/2022] [Accepted: 06/23/2022] [Indexed: 12/29/2022]
Abstract
Non-small cell lung cancer (NSCLC) is a major cause of global cancer mortalities and accounts for approximately 80-85% of reported lung cancer cases. Conventional chemotherapeutics show limited application because of poor tumor selectivity and acquired drug resistance. Antimicrobial peptides (AMPs) have gained much attention as potential anticancer therapeutics owing to their high potency and high target selectivity and specificity with limited scope for drug resistance. In this study, D-LAK (D-LAK-120A), a cationic AMP, was evaluated for its anticancer efficacy in various NSCLC cell lines. D-LAK peptide demonstrated enhanced cytotoxicity in A549, H358, H1975, and HCC827 cell lines with inhibitory concentrations between 4.0 and 5.5 μM. An increase in the lactate dehydrogenase (LDH) levels and propidium iodide (PI) uptake across compromised membrane suggested membranolytic activity as an inhibition pathway. In addition, we found D-LAK induced lung cancer cell apoptosis and arrested cells in the S phase (DNA synthesis) of cell cycle. Moreover, a decreased mitochondrial membrane potential and elevated ROS levels were observed after D-LAK treatment, suggesting induction of mitochondria-mediated apoptosis. Additionally, D-LAK inhibited single cell proliferation and cancer cell migration in vitro. The tumor reduction observed in the 3D spheroid assay further suggests the potential use of D-LAK as an anticancer agent for NSCLC treatment. Our results postulate innovative insights on the anticancer mechanism of D-LAK, which may contribute to its further development into preclinical studies and a potential therapeutic.
Collapse
|
4
|
de la Fuente B, Berrada H, Barba FJ. Marine resources and cancer therapy: from current evidence to challenges for functional foods development. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Deng Z, Yang Z, Peng J. Role of bioactive peptides derived from food proteins in programmed cell death to treat inflammatory diseases and cancer. Crit Rev Food Sci Nutr 2021:1-19. [PMID: 34694177 DOI: 10.1080/10408398.2021.1992606] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bioactive peptides are specific peptide which usually contains 2-20 amino acid residues and actively exerts various functions and biological activities and ultimately affect health. Programmed cell deaths are some styles of cell death discovered in recent years, which is the key to tissue development and balance, eliminating excess, damaged or aging cells. More importantly, programmed cell death is a potential way to treat inflammatory diseases and cancer. In this review, through screening references from 2015 to present, we introduce the effect of bioactive peptides derived from food proteins on inflammatory diseases or cancer through regulating programmed cell deaths, including apoptosis, autophagy, pyroptosis, ferroptosis, and necroptosis. And this review also introduces the targets of these bioactive peptides to regulate programmed cell death. The purpose of this review is to help to expand the prospective applications of bioactive peptides in the field of inflammatory disease and cancer to provide some guidance.
Collapse
Affiliation(s)
- Zhao Deng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China.,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhipeng Yang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China.,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| |
Collapse
|
6
|
Zandsalimi F, Talaei S, Noormohammad Ahari M, Aghamiri S, Raee P, Roshanzamiri S, Yarian F, Bandehpour M, Zohrab Zadeh Z. Antimicrobial peptides: a promising strategy for lung cancer drug discovery? Expert Opin Drug Discov 2020; 15:1343-1354. [PMID: 32749935 DOI: 10.1080/17460441.2020.1791080] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Antimicrobial peptides (AMPs), also called host defense peptides (HDPs), are identified in almost any form of life, which play an important role in innate immune systems. They have a broad spectrum of antifungal, antiviral, antibacterial, and anticancer activities. Lung cancer remains the leading cause of global cancer-related death. Unfortunately, lung cancer chemotherapy is accompanied by serious side effects, nonspecific toxicity, and multidrug resistance. Hence, to overcome these drawbacks, anticancer peptides (ACPs) derived from AMPs may represent a potential promising synergistic treatment strategy for lung cancer. AREAS COVERED In this review, the authors provide the recent advancements in the use of AMPs for the treatment of lung cancer. Furthermore, the anti-lung cancer modes of action of these peptides have been fully reviewed. Importantly, various strategies for increasing the efficiency and safety of AMPs have been discussed. EXPERT OPINION The combination of AMPs and other cancer treatment approaches such as chemotherapy, nanoparticle-based delivery systems, and photodynamic therapy can be used as a promising revolutionary strategy for the treatment of lung cancer. The most significant limitations of this strategy that need to be focused on are low efficiency and off-target events.
Collapse
Affiliation(s)
- Farshid Zandsalimi
- Students' Scientific Research Center, Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences , Tehran, Iran
| | - Sam Talaei
- School of Pharmacy, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Mehdi Noormohammad Ahari
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Shahin Aghamiri
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences , Tehran, Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Pourya Raee
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Soheil Roshanzamiri
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Fatemeh Yarian
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences , Tehran, Iran.,Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Mojgan Bandehpour
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences , Tehran, Iran.,Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Zeinab Zohrab Zadeh
- Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences , Ahvaz, Iran
| |
Collapse
|
7
|
Synthesis and evaluation of moxifloxacin derivatives for effects on proliferation and apoptosis of NCI-H1299 cells. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
8
|
Kunda NK. Antimicrobial peptides as novel therapeutics for non-small cell lung cancer. Drug Discov Today 2020; 25:238-247. [DOI: 10.1016/j.drudis.2019.11.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/07/2019] [Accepted: 11/24/2019] [Indexed: 01/02/2023]
|
9
|
Yao PP, Sheng MJ, Weng WH, Long Y, Liu H, Chen L, Lu JJ, Rong A, Li B. High glucose causes apoptosis of rabbit corneal epithelial cells involving activation of PERK-eIF2α-CHOP-caspase-12 signaling pathway. Int J Ophthalmol 2019; 12:1815-1822. [PMID: 31850162 DOI: 10.18240/ijo.2019.12.01] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 10/25/2019] [Indexed: 12/14/2022] Open
Abstract
AIM To investigate the effect of high concentration of glucose (HCG) on double stranded RNA-activated protein kinase-like ER kinase (PERK)-eukaryotic initiation factor-2α (eIF2α)-transcription factor C/EBP homologous protein (CHOP)-cysteine aspartate specific proteinase (caspase-12) signaling pathway activation and apoptosis in rabbit corneal epithelial cells (RCECs). METHODS RCECs were treated by different concentrations of glucose for 0-48h. The expressions of PERK, p-PERK, eIF2α, p-eIF2α, 78 kDa glucose-regulated protein 78 (GRP78), CHOP, B-cell lymphoma 2 (Bcl-2), B-cell lymphoma-2-associated X protein (Bax) and caspase-12 were determined by Western blot. Apoptosis was detected by TUNEL assay. Meanwhile, the function of PERK-eIF2α-CHOP-caspase-12 signaling pathway activation in high glucose-induced apoptosis was evaluated using PERK inhibitor, GSK2606414. RESULTS HCG significantly promoted the expression of p-PERK, p-eIF2α, GRP78, CHOP, Bax and cleaved caspase-12 in RCECs (P<0.05), while remarkably decreased the expression of Bcl-2 and caspase-12 (P<0.05), and the alterations caused by glucose were in concentration- and time-dependent manners. Meanwhile, PERK and eIF2α expressions were not affected in all groups (P>0.05). TUNEL assay showed that the apoptosis rate of RCECs in the HCG group increased significantly in contrast with that in the normal concentration of glucose or osmotic pressure control group (P<0.05), and the apoptosis rate increased with the increase of glucose concentration within limits (P<0.05). GSK2606414 down-regulated the expression of p-PERK and p-eIF2α in the HCG group (P<0.05), while still did not affect the expression of PERK and eIF2α among groups (P>0.05). Correspondingly, GSK2606414 also significantly reduced the apoptosis rate induced by high glucose (P<0.05). CONCLUSION HCG activates PERK-eIF2α-CHOP-caspase-12 signaling pathway and promotes apoptosis of RCECs.
Collapse
Affiliation(s)
- Pan-Pan Yao
- Department of Ophthalmology, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Min-Jie Sheng
- Department of Ophthalmology, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Wen-Hao Weng
- Department of Clinical Laboratory, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Yin Long
- Department of Clinical Laboratory, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Hao Liu
- Department of Ophthalmology, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Li Chen
- Department of Ophthalmology, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Jia-Jun Lu
- Department of Ophthalmology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Ao Rong
- Department of Ophthalmology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Bing Li
- Department of Ophthalmology, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| |
Collapse
|
10
|
Marine Collagen Peptides Promote Cell Proliferation of NIH-3T3 Fibroblasts via NF-κB Signaling Pathway. Molecules 2019; 24:molecules24224201. [PMID: 31752414 PMCID: PMC6891425 DOI: 10.3390/molecules24224201] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023] Open
Abstract
Marine collagen peptides (MCPs) with the ability to promote cell proliferation and migration were obtained from the skin of Nibea japonica. The purpose of MCPs isolation was an attempt to convert the by-products of the marine product processing industry to high value-added items. MCPs were observed to contain many polypeptides with molecular weights ≤ 10 kDa and most amino acid residues were hydrophilic. MCPs (0.25–10 mg/mL) also exhibited 2, 2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl, superoxide anion, and 2′-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging activities. Furthermore, MCPs promoted the proliferation of NIH-3T3 cells. In vitro scratch assays indicated that MCPs significantly enhanced the scratch closure rate and promoted the migration of NIH-3T3 cells. To further determine the signaling mechanism of MCPs, western blotting was used to study the expression levels of nuclear factor kappa-B (NF-κB) p65, IκB kinase α (IKKα), and IκB kinase β (IKKβ) proteins of the NF-κB signaling pathway. Our results indicated protein levels of NF-κB p65, IKKα and IKKβ increased in MCPs-treated NIH-3T3 cells. In addition, MCPs increased the expression of epidermal growth factor (EGF), fibroblast growth factor (FGF), vascular endothelial growth factor (VEGF), and transforming growth factor (TGF-β) in NIH-3T3 cells. Therefore, MCPs, a by-product of N. japonica, exhibited potential wound healing abilities in vitro.
Collapse
|
11
|
Jiang X, Yang F, Zhao Q, Tian D, Tang Y. Protective effects of pentadecapeptide derived from Cyclaina sinensis against cyclophosphamide-induced hepatotoxicity. Biochem Biophys Res Commun 2019; 520:392-398. [PMID: 31607481 DOI: 10.1016/j.bbrc.2019.10.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 10/04/2019] [Indexed: 02/06/2023]
Abstract
Our study was aimed at investigating the hepatoprotective effects of pentadecapeptide (RVAPEEHPVEGRYLV) from Cyclaina sinensis (SCSP) against cyclophosphamide (CTX)-induced hepatotoxicity in mice. Our results show that SCSP can significantly alleviate CTX-induced hepatotoxicity by decreasing the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride (TG) and malondialdehyde (MDA), and increasing the levels of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT) in the liver. In addition, the levels of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) were also significantly decreased in the liver tissues when treated with SCSP. Moreover, the protein levels of the toll-like receptor 4 (TLR4)-mediated nuclear factor-kappa B (NF-κB) pathway and apoptosis-related proteins were also restored by SCSP treatment. Overall, our results suggest that SCSP can potentially improve the CTX-induced hepatotoxicity.
Collapse
Affiliation(s)
- Xiaoxia Jiang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Fei Yang
- Hangzhou Obstetrics & Gynecology Hospital, Hangzhou, 310008, China
| | - Qiaojun Zhao
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Diying Tian
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yunping Tang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China.
| |
Collapse
|
12
|
Structure, Function, and Therapeutic Potential of Marine Bioactive Peptides. Mar Drugs 2019; 17:md17090505. [PMID: 31466341 PMCID: PMC6780686 DOI: 10.3390/md17090505] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 08/25/2019] [Accepted: 08/26/2019] [Indexed: 12/11/2022] Open
|
13
|
Zhang Z, Hu X, Lin L, Ding G, Yu F. Immunomodulatory Activity of Low Molecular-Weight Peptides from Nibea japonica in RAW264.7 Cells via NF-κB Pathway. Mar Drugs 2019; 17:E404. [PMID: 31288466 PMCID: PMC6669675 DOI: 10.3390/md17070404] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 06/28/2019] [Accepted: 07/06/2019] [Indexed: 12/12/2022] Open
Abstract
In this study, a low molecular-weight (Mw) peptide named NJP (<1 kDa), was purified from a protein hydrolysate of Nibea japonica by ultrafiltration, and its immunomodulatory effect on RAW264.7 cells was evaluated. The lactate dehydrogenase (LDH) and MTT assays were performed to explore the cytotoxicity of NJP. The results showed that NJP promoted cell proliferation and had no significant toxic effects on RAW264.7 cells. Moreover, the cells formed multiple pseudopodia indicating that they were in activated state. Further tests showed that NJP significantly promoted phagocytic capacity, and the secretion of proinflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β). It also increased the synthesis of nitric oxide (NO) by upregulating inducible nitric oxide synthase (iNOS) protein level. Flow cytometry revealed that NJP promoted cell cycle progression and increased the percentage of cells in G0/G1 phase. NJP promoted IκBα degradation, p65 and nuclear factor (NF)-κB activation and translocation by up-regulating IKKα/β protein expression. In conclusion, these results indicated that NJP exerts immunomodulatory effects on RAW264.7 cells through the NF-κB signaling pathway. Therefore, NJP can be incorporated in the production of functional foods or nutraceuticals.
Collapse
Affiliation(s)
- Zhuangwei Zhang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Xuyang Hu
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Lin Lin
- ZhouShan Academy of Agriculture and Forestry Sciences, Zhoushan 316022, China
| | - Guofang Ding
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Fangmiao Yu
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
14
|
Serine Protease from Nereis virens Inhibits H1299 Lung Cancer Cell Proliferation via the PI3K/AKT/mTOR Pathway. Mar Drugs 2019; 17:md17060366. [PMID: 31226829 PMCID: PMC6627947 DOI: 10.3390/md17060366] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/15/2019] [Accepted: 06/18/2019] [Indexed: 02/07/2023] Open
Abstract
This study explores the in vitro anti-proliferative mechanism between Nereis Active Protease (NAP) and human lung cancer H1299 cells. Colony formation and migration of cells were significantly lowered, following NAP treatment. Flow cytometry results suggested that NAP-induced growth inhibition of H1299 cells is linked to apoptosis, and that NAP can arrest the cells at the G0/G1 phase. The ERK/MAPK and PI3K/AKT/mTOR pathways were selected for their RNA transcripts, and their roles in the anti-proliferative mechanism of NAP were studied using Western blots. Our results suggested that NAP led to the downregulation of p-ERK (Thr 202/Tyr 204), p-AKT (Ser 473), p-PI3K (p85), and p-mTOR (Ser 2448), suggesting that NAP-induced H1299 cell apoptosis occurs via the PI3K/AKT/mTOR pathway. Furthermore, specific inhibitors LY294002 and PD98059 were used to inhibit these two pathways. The effect of NAP on the downregulation of p-ERK and p-AKT was enhanced by the LY294002 (a PI3K inhibitor), while the inhibitor PD98059 had no obvious effect. Overall, the results suggested that NAP exhibits antiproliferative activity by inducing apoptosis, through the inhibition of the PI3K/AKT/mTOR pathway.
Collapse
|
15
|
Chen Y, Guo M, Yang J, Chen J, Xie B, Sun Z. Potential TSPO Ligand and Photooxidation Quencher Isorenieratene from Arctic Ocean Rhodococcus sp. B7740. Mar Drugs 2019; 17:md17060316. [PMID: 31146377 PMCID: PMC6627809 DOI: 10.3390/md17060316] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/18/2019] [Accepted: 05/20/2019] [Indexed: 12/18/2022] Open
Abstract
Due to its special aromatic structure, isorenieratene is thought to be an active natural antioxidant and photo/UV damage inhibitor. In this work, isorenieratene that was extracted from Rhodococcus sp. B7740 isolated from the Arctic Ocean, showed excellent scavenging ability of both singlet oxygen and hydroxyl radical in the UVB-induced auto-oxidation process using the EPR method. Within an ARPE-19 cell model damaged by UVB radiation, isorenieratene showed fine protective effects (1.13 ± 0.03 fold) compared with macular xanthophylls (MXs) through upregulating of tspo. The molecular docking was firstly performed to investigate the interaction of isorenieratene with TSPO as a special ligand. Results showed isorenieratene might form a better binding conformation (S-score −8.5438) than MXs and indicate that isorenieratene not only can function as a direct antioxidant but also activate tspo in ARPE-19 cells. Thus, isorenieratene might ease the UV-related damages including age-related macular degeneration (AMD).
Collapse
Affiliation(s)
- Yashu Chen
- Natural Product Laboratory, Department of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Mengyao Guo
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of informatics, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jifang Yang
- College of Biological and Environmental Science, Zhejiang Wanli University, Ningbo 315100, China.
| | - Jigang Chen
- College of Biological and Environmental Science, Zhejiang Wanli University, Ningbo 315100, China.
| | - Bijun Xie
- Natural Product Laboratory, Department of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zhida Sun
- Natural Product Laboratory, Department of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|