1
|
Qiu H, Qian S, Head SA, Sanchez PR, Liu JO, Jin Z. Insights into the structure-activity relationship of the anticancer compound ZJ-101: A role played by the amide moiety. Bioorg Med Chem Lett 2024; 105:129741. [PMID: 38599296 PMCID: PMC11060512 DOI: 10.1016/j.bmcl.2024.129741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/30/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
ZJ-101, a structurally simplified analog of marine natural product superstolide A, was previously designed and synthesized in our laboratory. In the present study four new analogs of ZJ-101 were designed and synthesized to investigate the structure-activity relationship of the acetamide moiety of the molecule. The biological evaluation showed that the amide moiety is important for the molecule's anticancer activity. Replacing the amide with other functional groups such as a sulfonamide group, a carbamate group, and a urea group resulted in the decrease in anticancer activity.
Collapse
Affiliation(s)
- Haibo Qiu
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, IA 52242, USA
| | - Shan Qian
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, IA 52242, USA
| | - Sarah A Head
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe St., Baltimore, MD 21205, USA
| | - Phillip R Sanchez
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe St., Baltimore, MD 21205, USA
| | - Jun O Liu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe St., Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University School of Medicine, 725 North Wolfe St., Baltimore, MD 21205, USA
| | - Zhendong Jin
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
2
|
Garcia MR, Andrade PB, Lefranc F, Gomes NGM. Marine-Derived Leads as Anticancer Candidates by Disrupting Hypoxic Signaling through Hypoxia-Inducible Factors Inhibition. Mar Drugs 2024; 22:143. [PMID: 38667760 PMCID: PMC11051506 DOI: 10.3390/md22040143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
The inadequate vascularization seen in fast-growing solid tumors gives rise to hypoxic areas, fostering specific changes in gene expression that bolster tumor cell survival and metastasis, ultimately leading to unfavorable clinical prognoses across different cancer types. Hypoxia-inducible factors (HIF-1 and HIF-2) emerge as druggable pivotal players orchestrating tumor metastasis and angiogenesis, thus positioning them as prime targets for cancer treatment. A range of HIF inhibitors, notably natural compounds originating from marine organisms, exhibit encouraging anticancer properties, underscoring their significance as promising therapeutic options. Bioprospection of the marine environment is now a well-settled approach to the discovery and development of anticancer agents that might have their medicinal chemistry developed into clinical candidates. However, despite the massive increase in the number of marine natural products classified as 'anticancer leads,' most of which correspond to general cytotoxic agents, and only a few have been characterized regarding their molecular targets and mechanisms of action. The current review presents a critical analysis of inhibitors of HIF-1 and HIF-2 and hypoxia-selective compounds that have been sourced from marine organisms and that might act as new chemotherapeutic candidates or serve as templates for the development of structurally similar derivatives with improved anticancer efficacy.
Collapse
Affiliation(s)
- Maria Rita Garcia
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (M.R.G.); (P.B.A.)
- 1H-TOXRUN-Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal
- UCIBIO/REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Paula B. Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (M.R.G.); (P.B.A.)
| | - Florence Lefranc
- Department of Neurosurgery, Hôpital Universitaire de Bruxelles (H.U.B), CUB Hôpital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium;
| | - Nelson G. M. Gomes
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (M.R.G.); (P.B.A.)
| |
Collapse
|
3
|
Pinard M, Moursli A, Coulombe B. Drugs targeting the particle for arrangement of quaternary structure (PAQosome) and protein complex assembly. Expert Opin Drug Discov 2024; 19:57-71. [PMID: 37840283 DOI: 10.1080/17460441.2023.2267974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023]
Abstract
INTRODUCTION The PAQosome is a 12-subunit complex that acts as a co-factor of the molecular chaperones HSP90 and HSP70. This co-chaperone has been shown to participate in assembly and maturation of several protein complexes, including nuclear RNA polymerases, RNA processing factors, the ribosome, PIKKs, and others. Subunits of the PAQosome, adaptors, and clients have been reported to be involved in various diseases, making them interesting targets for drug discovery. AREA COVERED In this review, the authors cover the detailed mechanisms of PAQosome and chaperone function. Specifically, the authors summarize the status of the PAQosome and some related chaperones and co-chaperones as candidate targets for drug discovery. Indeed, a number of compounds are currently being tested for the development of treatments against diseases, such as cancers and neurodegenerative conditions. EXPERT OPINION Searching for new drugs targeting the PAQosome requires a better understanding of PAQosome subunit interactions and the discovery of new interaction partners. Thus, PAQosome subunit crystallization is an important experiment to initiate virtual screening against new target and the development of in silico tools such as AlphaFold-multimer could accelerate the search for new interaction partner and determine more rapidly the interaction pocket needed for virtual drug screening.
Collapse
Affiliation(s)
- Maxime Pinard
- Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal, Montréal, Québec, Canada
| | - Asmae Moursli
- Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal, Montréal, Québec, Canada
| | - Benoit Coulombe
- Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal, Montréal, Québec, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
4
|
Sumii Y, Kamiya K, Nakamura T, Tanaka K, Kaji T, Mukomura J, Kotoku N, Arai M. Study of the Structure–Activity Relationship of an Anti-Dormant Mycobacterial Substance 3-(Phenethylamino)Demethyl(oxy)aaptamine to Create a Probe Molecule for Detecting Its Target Protein. Mar Drugs 2022; 20:md20020098. [PMID: 35200628 PMCID: PMC8879696 DOI: 10.3390/md20020098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/12/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023] Open
Abstract
The current tuberculosis treatment regimen is long and complex, and its failure leads to relapse and emergence of drug resistance. One of the major reasons underlying the extended chemotherapeutic regimen is the ability of Mycobacterium tuberculosis to attain a dormant state. Therefore, the identification of new lead compounds with chemical structures different from those of conventional anti-tuberculosis drugs is essential. The compound 3-(phenethylamino)demethyl(oxy)aaptamine (PDOA, 1), isolated from marine sponge of Aaptos sp., is known as an anti-dormant mycobacterial substance, and has been reported to be effective against the drug resistant strains of M. tuberculosis. However, its target protein still remains unclear. This study aims to clarify the structure–activity relationship of 1 using 15 synthetic analogues, in order to prepare a probe molecule for detecting the target protein of 1. We succeeded in creating the compound 15 with a photoaffinity group that retained antimicrobial activity, which proved to be a suitable probe molecule for identifying the target protein of 1.
Collapse
Affiliation(s)
- Yuji Sumii
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; (Y.S.); (K.K.); (T.N.); (K.T.); (T.K.)
| | - Kentaro Kamiya
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; (Y.S.); (K.K.); (T.N.); (K.T.); (T.K.)
| | - Takehiko Nakamura
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; (Y.S.); (K.K.); (T.N.); (K.T.); (T.K.)
| | - Kenta Tanaka
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; (Y.S.); (K.K.); (T.N.); (K.T.); (T.K.)
| | - Takumi Kaji
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; (Y.S.); (K.K.); (T.N.); (K.T.); (T.K.)
| | - Junya Mukomura
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan;
| | - Naoyuki Kotoku
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; (Y.S.); (K.K.); (T.N.); (K.T.); (T.K.)
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan;
- Correspondence: (N.K.); (M.A.); Tel.: +81-77561-4920 (N.K.); +81-66879-8215 (M.A.); Fax: +81-66879-8215 (M.A.)
| | - Masayoshi Arai
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; (Y.S.); (K.K.); (T.N.); (K.T.); (T.K.)
- Correspondence: (N.K.); (M.A.); Tel.: +81-77561-4920 (N.K.); +81-66879-8215 (M.A.); Fax: +81-66879-8215 (M.A.)
| |
Collapse
|
5
|
Herranz-Montoya I, Park S, Djouder N. A comprehensive analysis of prefoldins and their implication in cancer. iScience 2021; 24:103273. [PMID: 34761191 PMCID: PMC8567396 DOI: 10.1016/j.isci.2021.103273] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Prefoldins (PFDNs) are evolutionary conserved co-chaperones, initially discovered in archaea but universally present in eukaryotes. PFDNs are prevalently organized into hetero-hexameric complexes. Although they have been overlooked since their discovery and their functions remain elusive, several reports indicate they act as co-chaperones escorting misfolded or non-native proteins to group II chaperonins. Unlike the eukaryotic PFDNs which interact with cytoskeletal components, the archaeal PFDNs can bind and stabilize a wide range of substrates, possibly due to their great structural diversity. The discovery of the unconventional RPB5 interactor (URI) PFDN-like complex (UPC) suggests that PFDNs have versatile functions and are required for different cellular processes, including an important role in cancer. Here, we summarize their functions across different species. Moreover, a comprehensive analysis of PFDNs genomic alterations across cancer types by using large-scale cancer genomic data indicates that PFDNs are a new class of non-mutated proteins significantly overexpressed in some cancer types.
Collapse
Affiliation(s)
- Irene Herranz-Montoya
- Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| | - Solip Park
- Computational Cancer Genomics Group, Structural Biology Programme, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| | - Nabil Djouder
- Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| |
Collapse
|
6
|
Ikeda H, Kakeya H. Targeting hypoxia-inducible factor 1 (HIF-1) signaling with natural products toward cancer chemotherapy. J Antibiot (Tokyo) 2021; 74:687-695. [PMID: 34331027 DOI: 10.1038/s41429-021-00451-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 05/29/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023]
Abstract
Tumor cells are often exposed to hypoxia because of the lower oxygen supply deep inside the tumor tissues. However, tumor cells survive in these severe conditions by adapting to hypoxic stress through the induction of hypoxia-inducible factor 1 (HIF-1) signaling. HIF-1 activation is responsible for the expression of numerous HIF-1 target genes, which are related to cell survival, proliferation, angiogenesis, invasion, metastasis, cancer stemness, and metabolic reprogramming. Therefore, HIF-1 is expected to be a potential pharmacological target for cancer therapy. Small molecules derived from natural products (microbial origin, plant-derived, or marine organisms) have been shown to have unique chemical structures and biological activities, including HIF-1 inhibition. Several studies identified HIF-1 inhibitors from natural products. In this review, we summarize the current HIF-1 signaling inhibitors originating from natural products with a variety of modes of action, mainly focusing on microbial metabolites.
Collapse
Affiliation(s)
- Hiroaki Ikeda
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
7
|
Kawakubo H, Kamisuki S, Suzuki K, Izaguirre-Carbonell J, Saito S, Murata H, Tanabe A, Hongo A, Murakami H, Matsunaga S, Sakaguchi K, Sahara H, Sugawara F, Kuramochi K. SQAP, an acyl sulfoquinovosyl derivative, suppresses expression of histone deacetylase and induces cell death of cancer cells under hypoxic conditions. Biosci Biotechnol Biochem 2021; 85:85-91. [PMID: 33577659 DOI: 10.1093/bbb/zbaa015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/16/2020] [Indexed: 01/16/2023]
Abstract
Sulfoglycolipid, SQAP, is a radiosensitizing agent that makes tumor cells more sensitive to radiation therapy. A previous study revealed that SQAP induced the degradation of hypoxia-inducible factor-1α (HIF-1α) and inhibited angiogenesis in a hepatoma model mouse. Herein, we examined the biological activities of SQAP against hepatocarcinoma cells under low oxygen conditions. Cell growth inhibition of SQAP under hypoxic conditions was significantly higher than that under normoxic conditions. In addition, SQAP was found to impair the expression of histone deacetylase (HDAC) under low oxygen conditions. Our present data suggested that SQAP induced the degradation of HIF-1α and then decreased the expression of HDAC1. Unlike known HDAC inhibitors, SQAP increased the acetylation level of histone in cells without inhibition of enzymatic activity of HDACs. Our data demonstrated hypoxia-specific unique properties of SQAP.
Collapse
Affiliation(s)
- Hirofumi Kawakubo
- Department of Applied Biological Science, Tokyo University of Science, Chiba, Japan
| | - Shinji Kamisuki
- School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| | - Kei Suzuki
- Department of Applied Biological Science, Tokyo University of Science, Chiba, Japan
| | | | - Shiki Saito
- School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| | - Hiroshi Murata
- Department of Applied Biological Science, Tokyo University of Science, Chiba, Japan
| | - Atsushi Tanabe
- School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| | - Ayumi Hongo
- School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| | | | - Sachihiro Matsunaga
- Department of Applied Biological Science, Tokyo University of Science, Chiba, Japan
| | - Kengo Sakaguchi
- Department of Applied Biological Science, Tokyo University of Science, Chiba, Japan
| | - Hiroeki Sahara
- School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| | - Fumio Sugawara
- Department of Applied Biological Science, Tokyo University of Science, Chiba, Japan
| | - Kouji Kuramochi
- Department of Applied Biological Science, Tokyo University of Science, Chiba, Japan
| |
Collapse
|
8
|
Dermouche S, Chagot ME, Manival X, Quinternet M. Optimizing the First TPR Domain of the Human SPAG1 Protein Provides Insight into the HSP70 and HSP90 Binding Properties. Biochemistry 2021; 60:2349-2363. [PMID: 33739091 DOI: 10.1021/acs.biochem.1c00052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tetratricopeptide repeat domains, or TPR domains, are protein domains that mediate protein:protein interaction. As they allow contacts between proteins, they are of particular interest in transient steps of the assembly process of macromolecular complexes, such as the ribosome or the dynein arms. In this study, we focused on the first TPR domain of the human SPAG1 protein. SPAG1 is a multidomain protein that is important for ciliogenesis whose known mutations are linked to primary ciliary dyskinesia syndrome. It can interact with the chaperones RUVBL1/2, HSP70, and HSP90. Using protein sequence optimization in combination with structural and biophysical approaches, we analyzed, with atomistic precision, how the C-terminal tails of HSPs bind a variant form of SPAG1-TPR1 that mimics the wild-type domain. We discuss our results with regard to other complex three-dimensional structures with the aim of highlighting the motifs in the TPR sequences that could drive the positioning of the HSP peptides. These data could be important for the druggability of TPR regulators.
Collapse
Affiliation(s)
- Sana Dermouche
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
| | | | - Xavier Manival
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
| | - Marc Quinternet
- Université de Lorraine, CNRS, INSERM, IBSLor, F-54000 Nancy, France
| |
Collapse
|
9
|
Kiguchi T, Kakihara Y, Yamazaki M, Katsura K, Izumi K, Tanuma JI, Saku T, Takagi R, Saeki M. Identification and characterization of R2TP in the development of oral squamous cell carcinoma. Biochem Biophys Res Commun 2021; 548:161-166. [PMID: 33640610 DOI: 10.1016/j.bbrc.2021.02.074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/17/2021] [Indexed: 10/22/2022]
Abstract
R2TP is a well-conserved molecular chaperone complex, composed of Pontin, Reptin, RPAP3, and PIH1D, in eukaryotes. Recent studies have suggested an involvement of R2TP in cancer development. However, it remains unclear if it is related to the development of oral squamous cell carcinoma (OSCC), which is the most common type of oral cancer. Here, we identify and investigate the function of R2TP in OSCC development. Immunohistochemical analysis reveals that all of the R2TP components are strongly expressed in normal oral epithelia and OSCC tissues, where actively proliferating cells are abundant. Co-immunoprecipitation assay identifies that R2TP components form a protein complex in OSCC-derived HSC4-cells. Knockdown experiments show that all R2TP components, except for RPAP3, are required for the cell proliferation and migration of HSC-4 cells. Furthermore, we reveal that Pontin contributes to a gain-of-function (GOF) activity of mutp53-R248Q in HSC-4 cells by regulating phosphorylation levels of mutp53 at Ser15 and Ser46. To our knowledge, this study is the first to report the functional involvement of R2TP and its components in the malignant characteristics of OSCC cells.
Collapse
Affiliation(s)
- Tetsuo Kiguchi
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry & Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan; Division of Dental Pharmacology, Faculty of Dentistry & Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Yoshito Kakihara
- Division of Dental Pharmacology, Faculty of Dentistry & Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan.
| | - Manabu Yamazaki
- Division of Oral Pathology, Faculty of Dentistry & Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Kouji Katsura
- Division of Oral and Maxillofacial Radiology, Faculty of Dentistry & Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Kenji Izumi
- Division of Biomimetics, Faculty of Dentistry & Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Jun-Ichi Tanuma
- Division of Oral Pathology, Faculty of Dentistry & Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Takashi Saku
- Faculty of Dentistry, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka, 814-0193, Japan
| | - Ritsuo Takagi
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry & Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Makio Saeki
- Division of Dental Pharmacology, Faculty of Dentistry & Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| |
Collapse
|
10
|
Dauden MI, López-Perrote A, Llorca O. RUVBL1-RUVBL2 AAA-ATPase: a versatile scaffold for multiple complexes and functions. Curr Opin Struct Biol 2020; 67:78-85. [PMID: 33129013 DOI: 10.1016/j.sbi.2020.08.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 12/20/2022]
Abstract
RUVBL1 and RUVBL2 are two highly conserved AAA+ ATPases that form a hetero-hexameric complex that participates in a wide range of unrelated cellular processes, including chromatin remodeling, Fanconi Anemia (FA), nonsense-mediated mRNA decay (NMD), and assembly and maturation of several large macromolecular complexes such as RNA polymerases, the box C/D small nucleolar ribonucleoprotein (snoRNP) and mTOR complexes. How the RUVBL1-RUVBL2 complex works in such a variety of processes, sometimes antagonistic, has been obscure for a long time. Recent cryo-electron microscopy (cryo-EM) studies have started to reveal how RUVBL1-RUVBL2 forms a scaffold for complex protein-protein interactions and how the structure and ATPase activity of RUVBL1-RUVBL2 can be affected and regulated by the interaction with clients.
Collapse
Affiliation(s)
- Maria I Dauden
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, Madrid 28029, Spain
| | - Andrés López-Perrote
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, Madrid 28029, Spain
| | - Oscar Llorca
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, Madrid 28029, Spain.
| |
Collapse
|
11
|
Iacobas DA. Biomarkers, Master Regulators and Genomic Fabric Remodeling in a Case of Papillary Thyroid Carcinoma. Genes (Basel) 2020; 11:E1030. [PMID: 32887258 PMCID: PMC7565446 DOI: 10.3390/genes11091030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/25/2020] [Accepted: 09/01/2020] [Indexed: 12/26/2022] Open
Abstract
Publicly available (own) transcriptomic data have been analyzed to quantify the alteration in functional pathways in thyroid cancer, establish the gene hierarchy, identify potential gene targets and predict the effects of their manipulation. The expression data have been generated by profiling one case of papillary thyroid carcinoma (PTC) and genetically manipulated BCPAP (papillary) and 8505C (anaplastic) human thyroid cancer cell lines. The study used the genomic fabric paradigm that considers the transcriptome as a multi-dimensional mathematical object based on the three independent characteristics that can be derived for each gene from the expression data. We found remarkable remodeling of the thyroid hormone synthesis, cell cycle, oxidative phosphorylation and apoptosis pathways. Serine peptidase inhibitor, Kunitz type, 2 (SPINT2) was identified as the Gene Master Regulator of the investigated PTC. The substantial increase in the expression synergism of SPINT2 with apoptosis genes in the cancer nodule with respect to the surrounding normal tissue (NOR) suggests that SPINT2 experimental overexpression may force the PTC cells into apoptosis with a negligible effect on the NOR cells. The predictive value of the expression coordination for the expression regulation was validated with data from 8505C and BCPAP cell lines before and after lentiviral transfection with DDX19B.
Collapse
Affiliation(s)
- Dumitru A Iacobas
- Personalized Genomics Laboratory, CRI Center for Computational Systems Biology, Roy G Perry College of Engineering, Prairie View A&M University, Prairie View, TX 77446, USA
| |
Collapse
|
12
|
Zaher AM, Lin J, Arai M. Cytotoxic Activity of Abietane-Type Diterpenes Isolated From Taxodium distichum Against Cancer Cells Adapted to Nutrient-Starved Conditions. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20915298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The mechanisms of cancer cell adaptation to tumor microenvironmental conditions, such as hypoxia and nutrient starvation, are currently receiving much attention as possible therapeutic targets. In an attempt to identify selectively cytotoxic substances against cancer cells adapted to nutrient starvation, 4 abietane-type diterpenes, sugiol (1), 6-α-hydroxysugiol (2), cryptojaponol (3), and 6-hydroxy-5,6-dehydrosugiol (4), were isolated from the bark of Taxodium distichum L. Rich var. distichum (bald cypress). Compounds 1, 2, and 4 showed potent cytotoxic activity against PANC-1 cells adapted to nutrient-starved conditions with half-maximal effective concentration (EC50) values of 6.4-9.2 µM, whereas the EC50 values of these compounds against PANC-1 cells under general culture conditions were more than 100 µM. Alternatively, compound 3, which we report for the first time in the genus Taxodium, showed moderate cytotoxicity against PANC-1 cells under nutrient-starved conditions with an EC50 of 37.9 µM. The selective index (S.I.), which compared the activity under nutrient-starved conditions with that under general culture conditions, was low (7.9). Further investigation revealed that the selective cytotoxic activity of compound 2 might be affecting the mitochondria.
Collapse
Affiliation(s)
- Ahmed M. Zaher
- Laboratory of Natural Products for Drug Discovery, Graduate School of Pharmaceutical Sciences, Osaka University, Japan
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Egypt
| | - Jianyu Lin
- Laboratory of Natural Products for Drug Discovery, Graduate School of Pharmaceutical Sciences, Osaka University, Japan
| | - Masayoshi Arai
- Laboratory of Natural Products for Drug Discovery, Graduate School of Pharmaceutical Sciences, Osaka University, Japan
| |
Collapse
|
13
|
Tang R, Kimishima A, Setiawan A, Arai M. Secalonic acid D as a selective cytotoxic substance on the cancer cells adapted to nutrient starvation. J Nat Med 2020; 74:495-500. [DOI: 10.1007/s11418-020-01390-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/18/2020] [Indexed: 11/24/2022]
|
14
|
Kakihara Y, Kiguchi T, Ohazama A, Saeki M. R2TP/PAQosome as a promising chemotherapeutic target in cancer. JAPANESE DENTAL SCIENCE REVIEW 2020; 56:38-42. [PMID: 31890057 PMCID: PMC6926247 DOI: 10.1016/j.jdsr.2019.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/27/2019] [Accepted: 08/21/2019] [Indexed: 11/30/2022] Open
Abstract
R2TP/PAQosome (particle for arrangement of quaternary structure) is a novel multisubunit chaperone specialized in the assembly/maturation of protein complexes that are involved in essential cellular processes such as PIKKs (phosphatidylinositol 3-kinase-like kinases) signaling, snoRNP (small nucleolar ribonucleoprotein) biogenesis, and RNAP II (RNA polymerase II) complex formation. In this review article, we describe the current understanding of R2TP/PAQosome functions and characteristics as well as how the chaperone complex is involved in oncogenesis, highlighting DNA damage response, mTOR (mammalian target of rapamycin) pathway as well as snoRNP biogenesis. Also, we discuss its possible involvement in HNSCC (head and neck squamous cell carcinoma) including OSCC (oral squamous cell carcinoma). Finally, we provide an overview of current anti-cancer drug development efforts targeting R2TP/PAQosome.
Collapse
Affiliation(s)
- Yoshito Kakihara
- Division of Dental Pharmacology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tetsuo Kiguchi
- Division of Dental Pharmacology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Atsushi Ohazama
- Division of Oral Anatomy, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Makio Saeki
- Division of Dental Pharmacology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
15
|
Cloutier P, Poitras C, Faubert D, Bouchard A, Blanchette M, Gauthier MS, Coulombe B. Upstream ORF-Encoded ASDURF Is a Novel Prefoldin-like Subunit of the PAQosome. J Proteome Res 2019; 19:18-27. [PMID: 31738558 DOI: 10.1021/acs.jproteome.9b00599] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The PAQosome is an 11-subunit chaperone involved in the biogenesis of several human protein complexes. We show that ASDURF, a recently discovered upstream open reading frame (uORF) in the 5' UTR of ASNSD1 mRNA, encodes the 12th subunit of the PAQosome. ASDURF displays significant structural homology to β-prefoldins and assembles with the five known subunits of the prefoldin-like module of the PAQosome to form a heterohexameric prefoldin-like complex. A model of the PAQosome prefoldin-like module is presented. The data presented here provide an example of a eukaryotic uORF-encoded polypeptide whose function is not limited to cis-acting translational regulation of downstream coding sequence and highlights the importance of including alternative ORF products in proteomic studies.
Collapse
Affiliation(s)
- Philippe Cloutier
- Institut de Recherches Cliniques de Montréal , 110 Avenue des Pins Ouest , Montréal , Quebec H2W 1R7 , Canada
| | - Christian Poitras
- Institut de Recherches Cliniques de Montréal , 110 Avenue des Pins Ouest , Montréal , Quebec H2W 1R7 , Canada
| | - Denis Faubert
- Institut de Recherches Cliniques de Montréal , 110 Avenue des Pins Ouest , Montréal , Quebec H2W 1R7 , Canada
| | - Annie Bouchard
- Institut de Recherches Cliniques de Montréal , 110 Avenue des Pins Ouest , Montréal , Quebec H2W 1R7 , Canada
| | - Mathieu Blanchette
- School of Computer Science , McGill University , 3480 University Street , Montréal , Quebec H3A 0E9 , Canada
| | - Marie-Soleil Gauthier
- Institut de Recherches Cliniques de Montréal , 110 Avenue des Pins Ouest , Montréal , Quebec H2W 1R7 , Canada
| | - Benoit Coulombe
- Institut de Recherches Cliniques de Montréal , 110 Avenue des Pins Ouest , Montréal , Quebec H2W 1R7 , Canada.,Département de Biochimie et Médecine Moléculaire, Faculté de Médecine , Université de Montréal , 2900 Boulevard Édouart-Montpetit , Montréal , Quebec H3T 1J4 , Canada
| |
Collapse
|
16
|
Tang R, Kimishima A, Ishida R, Setiawan A, Arai M. Selective cytotoxicity of epidithiodiketopiperazine DC1149B, produced by marine-derived Trichoderma lixii on the cancer cells adapted to glucose starvation. J Nat Med 2019; 74:153-158. [PMID: 31435860 PMCID: PMC7946679 DOI: 10.1007/s11418-019-01357-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 08/10/2019] [Indexed: 01/27/2023]
Abstract
The core of solid tumors is characterized by hypoxia and a nutrient-starved microenvironment and has gained much attention as targets of anti-cancer drugs. In the course of search for selective growth inhibitors against the cancer cells adapted to nutrient starvation, epidithiodiketopiperazine DC1149B (1) together with structurally related compounds, trichodermamide A (2) and aspergillazine A (3), were isolated from culture extract of marine-derived Trichoderma lixii. Compounds 1 exhibited potent selective cytotoxic activity against human pancreatic carcinoma PANC-1 cells cultured under glucose-starved conditions with IC50 values of 0.02 µM. The selective index of the compound 1 was found to be 35,500-fold higher for cells cultured under glucose-starved conditions than those under the general culture conditions. The mechanistic analysis indicated that compound 1 inhibited the response of the ER stress signaling. In addition, these effects of compound 1 could be mediated by inhibiting complex II in the mitochondrial electron transport chain.
Collapse
Affiliation(s)
- Rui Tang
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka 1-6, Suita, Osaka, 565-0871, Japan
| | - Atsushi Kimishima
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka 1-6, Suita, Osaka, 565-0871, Japan
| | - Ryosuke Ishida
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka 1-6, Suita, Osaka, 565-0871, Japan
| | - Andi Setiawan
- Department of Chemistry, Faculty of Science, Lampung University, Jl. Prof. Dr. Sumantri Brodjonegoro No. 1, Bandar Lampung, 35145, Indonesia
| | - Masayoshi Arai
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka 1-6, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
17
|
Jomori T, Setiawan A, Sasaoka M, Arai M. Cytotoxicity of New Diterpene Alkaloids, Ceylonamides G-I, Isolated From Indonesian Marine Sponge of Spongia sp. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19857294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In the course of the search for cancer cell growth inhibitors, 3 new diterpene alkaloids, designated ceylonamides G-I (1-3), together with ceylonamide F (4) were isolated from an Indonesian marine sponge of Spongia sp. The chemical structures of compounds 1-3 were determined using spectroscopic analysis and compared with those of compound 4. Among the isolated compounds, 1 and 4 inhibited the growth of human prostate cancer DU145 cells in a two-dimensional monolayer culture, with an IC50 of 6.9 and 18.8 µM, respectively. Furthermore, these compounds are also effective on spheroid of three-dimensional cell culture model, which was prepared from DU145 cells. Based on the morphological changes in the spheroids, the minimum effective concentrations of compounds 1 and 4 were 10 and 25 µM, respectively.
Collapse
Affiliation(s)
- Takahiro Jomori
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Andi Setiawan
- Department of Chemistry, Faculty of Science, Lampung University, Bandar Lampung, Indonesia
| | - Miho Sasaoka
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Masayoshi Arai
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| |
Collapse
|