1
|
Smith SJ, Cummins SF, Motti CA, Wang T. A mass spectrometry database for the identification of marine animal saponin-related metabolites. Anal Bioanal Chem 2024:10.1007/s00216-024-05586-1. [PMID: 39387871 DOI: 10.1007/s00216-024-05586-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/10/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024]
Abstract
Saponins encompass a diverse group of naturally occurring glycoside molecules exhibiting amphiphilic properties and a broad range of biological activities. There is a resurgence of interest in those saponins produced by marine organisms based on their potential therapeutic benefits, application in food products and most recently their potential involvement in intra- and inter-species chemical communication. The continual advancements in liquid chromatography techniques and mass spectrometry technologies have allowed for greater detection rates, as well as improved isolation and elucidation of saponins. These factors have significantly contributed to the expansion in the catalogue of known saponin structures isolated from marine invertebrates; however, there currently exists no specific chemical library resource to accelerate the discovery process. In this study, a Marine Animal Saponin Database (MASD v1.0) has been developed to serve as a valuable chemical repository for known marine saponin-related data, including chemical formula, molecular mass and biological origin of nearly 1000 secondary metabolites associated with saponins produced by marine invertebrates. We demonstrate its application with an exemplar asteroid extract (Acanthaster cf. solaris, also known as crown-of-thorns starfish; COTS), identifying saponins from the MASD v1.0 that have been previously reported from COTS, as well as 21 saponins isolated from multiple other related asteroid species. This database will help facilitate future research endeavours, aiding researchers in exploring the vast chemical diversity of saponins produced by marine organisms and providing ecological insights, and the realisation of their potential for various applications, including as pharmaceuticals.
Collapse
Affiliation(s)
- Stuart J Smith
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia.
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia.
| | - Scott F Cummins
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
| | - Cherie A Motti
- Australian Institute of Marine Science (AIMS), Cape Ferguson, Townsville, QLD, 4810, Australia
| | - Tianfang Wang
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
| |
Collapse
|
2
|
Silchenko AS, Kalinovsky AI, Avilov SA, Popov RS, Chingizova EA, Menchinskaya ES, Zelepuga EA, Tabakmakher KM, Stepanov VG, Kalinin VI. The Composition of Triterpene Glycosides in the Sea Cucumber Psolus peronii: Anticancer Activity of the Glycosides against Three Human Breast Cancer Cell Lines and Quantitative Structure-Activity Relationships (QSAR). Mar Drugs 2024; 22:292. [PMID: 39057402 PMCID: PMC11278233 DOI: 10.3390/md22070292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Eight sulfated triterpene glycosides, peronioside A (1) and psolusosides A (2), B (3), G (4), I (5), L (6), N (7) and P (8), were isolated from the sea cucumber Psolus peronii. Peronioside A (1) is a new glycoside, while compounds 2-8 were found previously in Psolus fabricii, indicating the phylogenetic and systematic closeness of these species of sea cucumbers. The activity of 1-8 against human erythrocytes and their cytotoxicity against the breast cancer cell lines MCF-7, T-47D and triple-negative MDA-MB-231 were tested. The most active against cancer cell compounds, psolusosides A (2) and L (6), which were not cytotoxic to the non-transformed cells of the mammary gland, were chosen to study the inhibition of the migration, formation and growth of colonies of the cancer cell lines. Glycoside 2 effectively inhibited the growth of colonies and the migration of the MDA-MB-231 cell line. Compound 6 blocked the growth of colonies of T-47D cells and showed a pronounced antimigration effect on MDA-MB-231 cells. The quantitative structure-activity relationships (QSAR) indicated the strong impact on the activity of the form and size of the molecules, which is connected to the length and architecture of the carbohydrate chain, the distribution of charge on the molecules' surface and various aspects of hydrogen bond formation, depending on the quantity and positions of the sulfate groups. The QSAR calculations were in good accordance with the observed SAR tendencies.
Collapse
Affiliation(s)
- Alexandra Sergeevna Silchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (A.I.K.); (S.A.A.); (R.S.P.); (E.A.C.); (E.S.M.); (E.A.Z.); (K.M.T.)
| | - Anatoly Ivanovich Kalinovsky
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (A.I.K.); (S.A.A.); (R.S.P.); (E.A.C.); (E.S.M.); (E.A.Z.); (K.M.T.)
| | - Sergey Anatolievich Avilov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (A.I.K.); (S.A.A.); (R.S.P.); (E.A.C.); (E.S.M.); (E.A.Z.); (K.M.T.)
| | - Roman Sergeevich Popov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (A.I.K.); (S.A.A.); (R.S.P.); (E.A.C.); (E.S.M.); (E.A.Z.); (K.M.T.)
| | - Ekaterina Alexandrovna Chingizova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (A.I.K.); (S.A.A.); (R.S.P.); (E.A.C.); (E.S.M.); (E.A.Z.); (K.M.T.)
| | - Ekaterina Sergeevna Menchinskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (A.I.K.); (S.A.A.); (R.S.P.); (E.A.C.); (E.S.M.); (E.A.Z.); (K.M.T.)
| | - Elena Alexandrovna Zelepuga
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (A.I.K.); (S.A.A.); (R.S.P.); (E.A.C.); (E.S.M.); (E.A.Z.); (K.M.T.)
| | - Kseniya Mikhailovna Tabakmakher
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (A.I.K.); (S.A.A.); (R.S.P.); (E.A.C.); (E.S.M.); (E.A.Z.); (K.M.T.)
| | - Vadim Georgievich Stepanov
- Kamchatka Branch of Pacific Institute of Geography, Far Eastern Branch of the Russian Academy of Sciences, Partizanskaya st. 6, 683000 Petropavlovsk-Kamchatsky, Russia;
| | - Vladimir Ivanovich Kalinin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (A.I.K.); (S.A.A.); (R.S.P.); (E.A.C.); (E.S.M.); (E.A.Z.); (K.M.T.)
| |
Collapse
|
3
|
Liu Y, Lu Z, Yan Z, Lin A, Han S, Li Y, Yang X, Li X, Yin X, Zhang R, Li K. Sea Cucumber Viscera Contains Novel Non-Holostane-Type Glycoside Toxins that Possess a Putative Chemical Defense Function. J Chem Ecol 2024; 50:185-196. [PMID: 38441803 DOI: 10.1007/s10886-024-01483-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/02/2024] [Accepted: 02/25/2024] [Indexed: 04/25/2024]
Abstract
Sea cucumbers frequently expel their guts in response to predators and an aversive environment, a behavior perceived as releasing repellents involved in chemical defense mechanisms. To investigate the chemical nature of the repellent, the viscera of stressed sea cucumbers (Apostichopus japonicus) in the Yellow Sea of China were collected and chemically analyzed. Two novel non-holostane triterpene glycosides were isolated, and the chemical structures were elucidated as 3ꞵ-O-[ꞵ-D-glucopyranosyl-(1→2)-ꞵ-D-xylopyranosyl]-(20S)-hydroxylanosta-7,25-diene-18(16)-lactone (1) and 3ꞵ-O-[ꞵ-D-quinovopyranosyl-(1→2)-ꞵ-D-xylopyranosyl]-(20S)-hydroxylanosta-7,25-diene-18(16)-lactone (2) by spectroscopic and mass-spectrometric analyses, exemplifying a triterpene glycoside constituent of an oligosaccharide containing two sugar-units and a non-holostane aglycone. Zebrafish embryos were exposed to various doses of 1 and 2 from 4 to 96 hpf. Compound 1 exposure showed 96 h-LC50 41.5 µM and an increased zebrafish mortality rates in roughly in a dose- and time-dependent manner. Compound 2, with different sugar substitution, exhibited no mortality and moderate teratogenic toxicity with a 96 h-EC50 of 173.5 µM. Zebrafish embryos exhibited teratogenic effects, such as reduced hatchability and total body length. The study found that triterpene saponin from A. japonicus viscera had acute toxicity in zebrafish embryos, indicating a potential chemical defense role in the marine ecosystem.
Collapse
Affiliation(s)
- Yanfang Liu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen Lu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Zhi Yan
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- School of Ocean, Yantai University, Yantai, 264005, China
| | - Ainuo Lin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shaoshuai Han
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 264209, China
| | - Yaxi Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao Yang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaodong Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Xiuli Yin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Ranran Zhang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ke Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| |
Collapse
|
4
|
Wang Y, Liu X, Zheng Y, Yang Y, Chen M. Endocrine regulation of reproductive biology in echinoderms: An evolutionary perspective from closest marine invertebrate relatives to chordates. Mol Cell Endocrinol 2024; 580:112105. [PMID: 37952726 DOI: 10.1016/j.mce.2023.112105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/27/2023] [Accepted: 10/29/2023] [Indexed: 11/14/2023]
Abstract
Echinoderms are a phylum of invertebrate deuterostomes, which contain echinoids, asteroids, holothuroids, crinoids, and ophiuroids. Echinoderms have special evolutionary position and unique characteristics, including pentamerous radial body structure, elaborate calcareous endoskeletons, and versatile water vascular system. Echinoderms exhibit extraordinarily diverse reproductive modes: asexual reproduction, sexual reproduction, sexual reversal, etc. Endocrine regulation plays important well-known roles in sex differentiation, gonadal development and maturation, gametogenesis, and reproductive behavior in vertebrates. However, the entire picture of reproductive endocrinology in echinoderms as an evolutionary model of the closest marine invertebrate relatives to chordates has not been revealed. Here, we reviewed previous and recent research progress on reproductive endocrinology in echinoderms, mainly including two sections: Sex steroids in echinoderms and neuropeptide regulation in echinoderm reproduction. This review introduces a variety of endocrine regulatory mechanisms in reproductive biology of echinoderms. It discusses the vertebrate-like sex steroids, putative steroidogenic pathway and metabolism, and reproduction-related neuropeptides. The review will provide a deeper understanding about endocrine regulatory mechanisms of gonadal development in lower deuterostomes and the application of endocrine control in economic echinoderm species in aquaculture.
Collapse
Affiliation(s)
- Yixin Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Xinghai Liu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yingqiu Zheng
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yujia Yang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China.
| | - Muyan Chen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China.
| |
Collapse
|
5
|
A Distinct Saponin Profile Drives an Olfactory-Mediated Aggregation in the Aquacultivated Sea Cucumber Holothuria scabra. Mar Drugs 2023; 21:md21030184. [PMID: 36976233 PMCID: PMC10053547 DOI: 10.3390/md21030184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Intraspecific chemical communication between echinoderms has often been limited to prespawning aggregation. However, sea cucumber farmers have long observed year-round adult aggregation as a potential source of disease propagation and the suboptimal use of available sea pen acreage and food resources. In this study, through spatial distribution statistics, we demonstrated the significant aggregation of the aquacultivated sea cucumber Holothuria scabra both as adults in large sea-based pens and as juveniles in laboratory-based aquaria, proving that aggregation in these animals is not only observed during spawning. The role of chemical communication in aggregation was investigated using olfactory experimental assays. Our study established that the sediment that H. scabra feeds on as well as the water preconditioned by conspecifics induced positive chemotaxis in juvenile individuals. More specifically, through comparative mass spectrometry, a distinct triterpenoid saponin profile/mixture was identified to be a pheromone allowing sea cucumber intraspecific recognition and aggregation. This “attractive” profile was characterized as containing disaccharide saponins. This “attractive” aggregation-inducing saponin profile was, however, not conserved in starved individuals that were no longer attractive to other conspecifics. In summary, this study sheds new light on the pheromones in echinoderms. It highlights the complexity of the chemical signals detected by sea cucumbers and suggests a role of saponins well beyond that of a simple toxin.
Collapse
|
6
|
Sasayama Y, Mamiya T, Qi J, Shibata T, Uchida K, Nabeshima T, Ojika M. Neuritogenic steroid glycosides from crown-of-thorns starfish: Possible involvement of p38 mitogen-activated protein kinase and attenuation of cognitive impairment in senescence-accelerated mice (SAMP8) by peripheral administration. Bioorg Med Chem 2023; 78:117144. [PMID: 36577328 DOI: 10.1016/j.bmc.2022.117144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Novel steroid glycosides, acanthasterosides A1, B1, and B3, have been isolated from the crown-of-thorns starfish Acanthaster planci. Acanthasterosides B1 and B3 having two separated xyloses induced neurite outgrowth as like as nerve growth factor (NGF) in the rat pheochromocytoma cell line PC12, whereas acanthasteroside A1, having one xylose, did not induce neurite outgrowth. The acanthasteroside B3 induced neuritogenesis via the significant activation of p38 mitogen-activated protein kinase after the activation of the small G-protein Cdc42 rather than via Ras-MEK-ERK pathway that is predominantly activated by NGF. Following subcutaneous administration, acanthasteroside B3 attenuated cognitive impairment of senescence-accelerated mice (SAMP8) in two different cognitive tests. Liquid chromatography-mass spectrometry-assisted quantitative analysis demonstrated that acanthasteroside B3 could be transported into the brain via the circulatory system in mice. Thus, acanthasteroside B3 (and possibly B1) are a novel class of potential drug candidates for neurodegenerative diseases.
Collapse
Affiliation(s)
- Yumi Sasayama
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Takayoshi Mamiya
- Faculty of Pharmacy, Meijo University, Tenpaku-ku, Nagoya 468-8503, Japan
| | - Jianhua Qi
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Takahiro Shibata
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Koji Uchida
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | | | - Makoto Ojika
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| |
Collapse
|
7
|
Silchenko AS, Avilov SA, Andrijaschenko PV, Popov RS, Chingizova EA, Grebnev BB, Rasin AB, Kalinin VI. The Isolation, Structure Elucidation and Bioactivity Study of Chilensosides A, A1, B, C, and D, Holostane Triterpene Di-, Tri- and Tetrasulfated Pentaosides from the Sea Cucumber Paracaudina chilensis (Caudinidae, Molpadida). Molecules 2022; 27:molecules27217655. [PMID: 36364484 PMCID: PMC9658831 DOI: 10.3390/molecules27217655] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Five new triterpene (4,4,14-trimethylsterol) di-, tri- and tetrasulfated pentaosides, chilensosides A (1), A1 (2), B (3), C (4), and D (5) were isolated from the Far-Eastern sea cucumber Paracaudina chilensis. The structures were established on the basis of extensive analysis of 1D and 2D NMR spectra and confirmed by HR-ESI-MS data. The structural variability of the glycosides concerned the pentasaccharide chains. Their architecture was characterized by the upper semi-chain consisting of three sugar units and the bottom semi-chain of two sugars. Carbohydrate chains of compounds 2–5 differed in the quantity and positions of sulfate groups. The interesting structural features of the glycosides were: the presence of two sulfate groups at C-4 and C-6 of the same glucose residue in the upper semi-chain of 1, 2, 4, and 5 and the sulfation at C-3 of terminal glucose residue in the bottom semi-chain of 4 that makes its further elongation impossible. Chilensoside D (5) was the sixth tetrasulfated glycoside found in sea cucumbers. The architecture of the sugar chains of chilensosides A–D (1–5), the positions of sulfation, the quantity of sulfate groups, as well as the aglycone structures, demonstrate their similarity to the glycosides of the representatives of the order Dendrochirotida, confirming the phylogenetic closeness of the orders Molpadida and Dendrochirotida. The cytotoxic activities of the compounds 1–5 against human erythrocytes and some cancer cell lines are presented. Disulfated chilensosides A1 (2) and B (3) and trisulfated chilensoside C (4) showed significant cytotoxic activity against human cancer cells.
Collapse
|
8
|
Silchenko AS, Avilov SA, Andrijaschenko PV, Popov RS, Chingizova EA, Dmitrenok PS, Kalinovsky AI, Rasin AB, Kalinin VI. Structures and Biologic Activity of Chitonoidosides I, J, K, K1 and L-Triterpene Di-, Tri- and Tetrasulfated Hexaosides from the Sea Cucumber Psolus chitonoides. Mar Drugs 2022; 20:md20060369. [PMID: 35736172 PMCID: PMC9228963 DOI: 10.3390/md20060369] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
Five new triterpene di-, tri- and tetrasulfated hexaosides (chitonoidosides I (1), J (2), K (3), K1 (4) and L (5)) were isolated from the Far-Eastern sea cucumber Psolus chitonoides, collected near Bering Island (Commander Islands) from a depth of 100–150 m. The structural variability of the glycosides concerned both the aglycones (with 7(8)- or 9(11)-double bonds) and carbohydrate chains differing from each other by the third sugar residue (Xyl or sulfated by C-6 Glc) and/or by the fourth—terminal in the bottom semi-chain—residue (Glc or sulfated by C-6 MeGlc) as well as by the positions of a sulfate group at C-4 or C-6 in the sixth—terminal in the upper semi-chain—residue (MeGlc). Hemolytic activities of these compounds 1–5 against human erythrocytes as well as cytotoxicity against human cancer cell lines, HeLa, DLD-1 and HL-60, were studied. The hexaosides, chitonoidosides K (3) and L (5) with four sulfate groups, were the most active against tumor cells in all the tests. Noticeably, the sulfate group at C-4 of MeGlc6 did not decrease the membranolytic effect of 5 as compared with 3, having the sulfate group at C-6 of MeGlc6. Erythrocytes were, as usual, more sensitive to the action of the studied glycosides than cancer cells, although the sensitivity of leukemia promyeloblast HL-60 cells was higher than that of other tumor cells. The glycosides 1 and 2 demonstrated some weaker action in relation to DLD-1 cells than against other tumor cell lines. Chitonoidoside K1 (4) with a hydroxyl at C 25 of the aglycone was not active in all the tests. The metabolic network formed by the carbohydrate chains of all the glycosides isolated from P. chitonoides as well as the aglycones biosynthetic transformations during their biosynthesis are discussed and illustrated with schemes.
Collapse
|
9
|
A new angular naphthopyrone from feather star Comanthus parvicirrus (Müller, 1841). J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Liu C, Yuan J, Zhang X, Jin S, Li F, Xiang J. tRNA copy number and codon usage in the sea cucumber genome provide insights into adaptive translation for saponin biosynthesis. Open Biol 2021; 11:210190. [PMID: 34753322 PMCID: PMC8580430 DOI: 10.1098/rsob.210190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Genomic tRNA copy numbers determine cytoplasmic tRNA abundances, which in turn influence translation efficiency, but the underlying mechanism is not well understood. Using the sea cucumber Apostichopus japonicus as a model, we combined genomic sequence, transcriptome expression and ecological food resource data to study its codon usage adaptation. The results showed that, unlike intragenic non-coding RNAs, transfer RNAs (tRNAs) tended to be transcribed independently. This may be attributed to their specific Pol III promoters that lack transcriptional regulation, which may underlie the correlation between genomic copy number and cytoplasmic abundance of tRNAs. Moreover, codon usage optimization was mostly restrained by a gene's amino acid sequence, which might be a compromise between functionality and translation efficiency for stress responses were highly optimized for most echinoderms, while enzymes for saponin biosynthesis (LAS, CYPs and UGTs) were especially optimized in sea cucumbers, which might promote saponin synthesis as a defence strategy. The genomic tRNA content of A. japonicus was positively correlated with amino acid content in its natural food particles, which should promote its efficiency in protein synthesis. We propose that coevolution between genomic tRNA content and codon usage of sea cucumbers facilitates their saponin synthesis and survival using food resources with low nutrient content.
Collapse
Affiliation(s)
- Chengzhang Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| | - Jianbo Yuan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| | - Xiaojun Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| | - Songjun Jin
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| | - Fuhua Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| | - Jianhai Xiang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| |
Collapse
|
11
|
Mohammadi Movahed M, Hosseini SA, Akbary P, Hajimoradloo A, Hedayati SAA. Antibacterial activity of muscle wall extracts of sea cucumber (Stichopus horrens) from Chabahar coastal area, Iran, against pathogenic bacteria in rainbow trout (Oncorhynchus mykiss). JOURNAL OF APPLIED ANIMAL RESEARCH 2021. [DOI: 10.1080/09712119.2021.1967161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Mohana Mohammadi Movahed
- Faculty of Fisheries and Environment Sciences, Fisheries and Aquatic Ecology group, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seyed Abbas Hosseini
- Faculty of Fisheries and Environment Sciences, Fisheries and Aquatic Ecology group, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Paria Akbary
- Faculty of Marine Sciences, Fisheries group, Chabahar Maritime University, Chabahar, Iran
| | - Abdolmajid Hajimoradloo
- Faculty of Fisheries and Environment Sciences, Fisheries and Aquatic Ecology group, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seyed Ali Akbar Hedayati
- Faculty of Fisheries and Environment Sciences, Fisheries and Aquatic Ecology group, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
12
|
Silchenko AS, Kalinovsky AI, Avilov SA, Andrijaschenko PV, Popov RS, Dmitrenok PS, Chingizova EA, Kalinin VI. Triterpene Glycosides from the Far Eastern Sea Cucumber Thyonidium (=Duasmodactyla) kurilensis (Levin): The Structures, Cytotoxicities, and Biogenesis of Kurilosides A 3, D 1, G, H, I, I 1, J, K, and K 1. Mar Drugs 2021; 19:md19040187. [PMID: 33801633 PMCID: PMC8066294 DOI: 10.3390/md19040187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/16/2021] [Accepted: 03/24/2021] [Indexed: 12/17/2022] Open
Abstract
Nine new mono-, di-, and trisulfated triterpene penta- and hexaosides, kurilosides A3 (1), D1 (2), G (3), H (4), I (5), I1 (6), J (7), K (8), and K1 (9) and two desulfated derivatives, DS-kuriloside L (10), having a trisaccharide branched chain, and DS-kuriloside M (11), having hexa-nor-lanostane aglycone with a 7(8)-double bond, have been isolated from the Far-Eastern deep-water sea cucumber Thyonidium (=Duasmodactyla) kurilensis (Levin) and their structures were elucidated based on 2D NMR spectroscopy and HR-ESI mass-spectrometry. Five earlier unknown carbohydrate chains and two aglycones (having a 16β,(20S)-dihydroxy-fragment and a 16β-acetoxy,(20S)-hydroxy fragment) were found in these glycosides. All the glycosides 1–9 have a sulfate group at C-6 Glc, attached to C-4 Xyl1, while the positions of the other sulfate groups vary in different groups of kurilosides. The analysis of the structural features of the aglycones and the carbohydrate chains of all the glycosides of T. kurilensis showed their biogenetic relationships. Cytotoxic activities of the compounds 1–9 against mouse neuroblastoma Neuro 2a, normal epithelial JB-6 cells, and erythrocytes were studied. The highest cytotoxicity in the series was demonstrated by trisulfated hexaoside kuriloside H (4), having acetoxy-groups at C(16) and C(20), the latter one obviously compensated the absence of a side chain, essential for the membranolytic action of the glycosides. Kuriloside I1 (6), differing from 4 in the lacking of a terminal glucose residue in the bottom semi-chain, was slightly less active. The compounds 1–3, 5, and 8 did not demonstrate cytotoxic activity due to the presence of hydroxyl groups in their aglycones.
Collapse
|
13
|
Silchenko AS, Kalinovsky AI, Avilov SA, Andrijaschenko PV, Popov RS, Dmitrenok PS, Chingizova EA, Ermakova SP, Malyarenko OS, Dautov SS, Kalinin VI. Structures and Bioactivities of Quadrangularisosides A, A 1, B, B 1, B 2, C, C 1, D, D 1-D 4, and E from the Sea Cucumber Colochirus quadrangularis: The First Discovery of the Glycosides, Sulfated by C-4 of the Terminal 3- O-Methylglucose Residue. Synergetic Effect on Colony Formation of Tumor HT-29 Cells of these Glycosides with Radioactive Irradiation. Mar Drugs 2020; 18:md18080394. [PMID: 32731458 PMCID: PMC7460491 DOI: 10.3390/md18080394] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 01/23/2023] Open
Abstract
Thirteen new mono-, di-, and trisulfated triterpene glycosides, quadrangularisosides A-D4 (1-13) have been isolated from the sea cucumber Colochirus quadrangularis, which was collected in Vietnamese waters. The structures of these glycosides were established by 2D NMR spectroscopy and HR-ESI (High Resolution Electrospray Ionization) mass spectrometry. The novel carbohydrate moieties of quadrangularisosides D-D4 (8-12), belonging to the group D, and quadrangularisoside E (13) contain three sulfate groups, with one of them occupying an unusual position-at C(4) of terminal 3-O-methylglucose residue. Quadrangularisosides A (1) and D3 (11) as well as quadrangularisosides A1 (2) and D4 (12) are characterized by the new aglycones having 25-hydroperoxyl or 24-hydroperoxyl groups in their side chains, respectively. The cytotoxic activities of compounds 1-13 against mouse neuroblastoma Neuro 2a, normal epithelial JB-6 cells, erythrocytes, and human colorectal adenocarcinoma HT-29 cells were studied. All the compounds were rather strong hemolytics. The structural features that most affect the bioactivity of the glycosides are the presence of hydroperoxy groups in the side chains and the quantity of sulfate groups. The membranolytic activity of monosulfated quadrangularisosides of group A (1, 2) against Neuro 2a, JB-6 cells, and erythrocytes was relatively weak due to the availability of the hydroperoxyl group, whereas trisulfated quadrangularisosides D3 (11) and D4 (12) with the same aglycones as 1, 2 were the least active compounds in the series due to the combination of these two structural peculiarities. The erythrocytes were more sensitive to the action of the glycosides than Neuro 2a or JB-6 cells, but the structure-activity relationships observed for glycosides 1-13 were similar in the three cell lines investigated. The compounds 3-5, 8, and 9 effectively suppressed the cell viability of HT-29 cells. Quadrangularisosides A1 (2), C (6), C1 (7), and E (13) possessed strong inhibitory activity on colony formation in HT-29 cells. Due to the synergic effects of these glycosides (0.02 μM) and radioactive irradiation (1 Gy), a decreasing of number of colonies was detected. Glycosides 1, 3, and 9 enhanced the effect of radiation by about 30%.
Collapse
Affiliation(s)
- Alexandra S. Silchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia; (A.I.K.); (S.A.A.); (P.V.A.); (R.S.P.); (P.S.D.); (E.A.C.); (S.P.E.); (O.S.M.); (V.I.K.)
- Correspondence: ; Tel.: +7(423)2-31-40-50
| | - Anatoly I. Kalinovsky
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia; (A.I.K.); (S.A.A.); (P.V.A.); (R.S.P.); (P.S.D.); (E.A.C.); (S.P.E.); (O.S.M.); (V.I.K.)
| | - Sergey A. Avilov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia; (A.I.K.); (S.A.A.); (P.V.A.); (R.S.P.); (P.S.D.); (E.A.C.); (S.P.E.); (O.S.M.); (V.I.K.)
| | - Pelageya V. Andrijaschenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia; (A.I.K.); (S.A.A.); (P.V.A.); (R.S.P.); (P.S.D.); (E.A.C.); (S.P.E.); (O.S.M.); (V.I.K.)
| | - Roman S. Popov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia; (A.I.K.); (S.A.A.); (P.V.A.); (R.S.P.); (P.S.D.); (E.A.C.); (S.P.E.); (O.S.M.); (V.I.K.)
| | - Pavel S. Dmitrenok
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia; (A.I.K.); (S.A.A.); (P.V.A.); (R.S.P.); (P.S.D.); (E.A.C.); (S.P.E.); (O.S.M.); (V.I.K.)
| | - Ekaterina A. Chingizova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia; (A.I.K.); (S.A.A.); (P.V.A.); (R.S.P.); (P.S.D.); (E.A.C.); (S.P.E.); (O.S.M.); (V.I.K.)
| | - Svetlana P. Ermakova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia; (A.I.K.); (S.A.A.); (P.V.A.); (R.S.P.); (P.S.D.); (E.A.C.); (S.P.E.); (O.S.M.); (V.I.K.)
| | - Olesya S. Malyarenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia; (A.I.K.); (S.A.A.); (P.V.A.); (R.S.P.); (P.S.D.); (E.A.C.); (S.P.E.); (O.S.M.); (V.I.K.)
| | - Salim Sh. Dautov
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 17 Palchevskogo Street, Vladivostok 690041, Russia;
| | - Vladimir I. Kalinin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia; (A.I.K.); (S.A.A.); (P.V.A.); (R.S.P.); (P.S.D.); (E.A.C.); (S.P.E.); (O.S.M.); (V.I.K.)
| |
Collapse
|
14
|
Ribeiro B, Lacchini E, Bicalho KU, Mertens J, Arendt P, Vanden Bossche R, Calegario G, Gryffroy L, Ceulemans E, Buitink J, Goossens A, Pollier J. A Seed-Specific Regulator of Triterpene Saponin Biosynthesis in Medicago truncatula. THE PLANT CELL 2020; 32:2020-2042. [PMID: 32303662 PMCID: PMC7268793 DOI: 10.1105/tpc.19.00609] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 03/27/2020] [Accepted: 04/10/2020] [Indexed: 05/06/2023]
Abstract
Plants produce a vast array of defense compounds to protect themselves from pathogen attack or herbivore predation. Saponins are a specific class of defense compounds comprising bioactive glycosides with a steroidal or triterpenoid aglycone backbone. The model legume Medicago truncatula synthesizes two types of saponins, hemolytic saponins and nonhemolytic soyasaponins, which accumulate as specific blends in different plant organs. Here, we report the identification of the seed-specific transcription factor TRITERPENE SAPONIN ACTIVATION REGULATOR3 (TSAR3), which controls hemolytic saponin biosynthesis in developing M. truncatula seeds. Analysis of genes that are coexpressed with TSAR3 in transcriptome data sets from developing M. truncatula seeds led to the identification of CYP88A13, a cytochrome P450 that catalyzes the C-16α hydroxylation of medicagenic acid toward zanhic acid, the final oxidation step of the hemolytic saponin biosynthesis branch in M. truncatula In addition, two uridine diphosphate glycosyltransferases, UGT73F18 and UGT73F19, which glucosylate hemolytic sapogenins at the C-3 position, were identified. The genes encoding the identified biosynthetic enzymes are present in clusters of duplicated genes in the M. truncatula genome. This appears to be a common theme among saponin biosynthesis genes, especially glycosyltransferases, and may be the driving force of the metabolic evolution of saponins.
Collapse
Affiliation(s)
- Bianca Ribeiro
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Elia Lacchini
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Keylla U Bicalho
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
- Department of Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo 14800-900, Brazil
| | - Jan Mertens
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Philipp Arendt
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Robin Vanden Bossche
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Gabriela Calegario
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Lore Gryffroy
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Evi Ceulemans
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Julia Buitink
- Institut de Recherche en Horticulture et Semences-Unités Mixtes de Recherche, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071 Beaucouzé, France
| | - Alain Goossens
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Jacob Pollier
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
- VIB Metabolomics Core, 9052 Ghent, Belgium
| |
Collapse
|