1
|
El Gaafary M, Abdel-Baki PM, El-Halawany AM, Mohamed HM, Duweb A, Abdallah HM, Mohamed GA, Ibrahim SRM, Simmet T, Syrovets T. Prenylated xanthones from mangosteen (Garcinia mangostana) target oxidative mitochondrial respiration in cancer cells. Biomed Pharmacother 2024; 179:117365. [PMID: 39217837 DOI: 10.1016/j.biopha.2024.117365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Mangosteen (Garcinia mangostana) is well-known for its nutritional value and health benefits. Breast cancer is the most common cancer and the leading cause of cancer-related mortality among females worldwide. Here we show that the prenylated xanthones, α-mangostin, γ-mangostin, 9-hydroxycalabaxanthone (9-HCX), and garcinone E from the mangosteen pericarp exhibit cytotoxicity against a panel of human cancer cell lines including lung adenocarcinoma (A549), cervical carcinoma (HeLa), prostatic carcinoma (DU 145), pancreatic carcinoma (MIA PaCa-2), hepatocellular carcinoma (Hep G2), bladder urothelial cancer (5637), as well as the triple-negative breast cancer cells MDA-MB-231. In line with its higher predicted bioactivity score compared to other prenylated xanthones, 9-HCX induced the strongest antiproliferative and proapoptotic effects in MDA-MB-231 breast cancer xenografts in vivo. In different in vitro models, we demonstrate that prenylated xanthones from G. mangostana target mitochondria in cancer cells by inhibition of the mitochondrial respiratory chain complex II (α-mangostin, γ-mangostin, and garcinone E) and complex III (9-HCX) as shown in isolated mitochondria. Accordingly, oxidative mitochondrial respiration (OXPHOS) was inhibited, mitochondrial proton leak increased, and adenosine triphosphate (ATP) synthesis decreased as analyzed by Seahorse assay in MDA-MB-231 cells. Hence, the prenylated xanthones increased mitochondrial superoxide levels, induced mitochondrial membrane permeabilization, and initiated caspase 3/7-mediated apoptosis in MDA-MB-231 triple-negative breast cancer cells. Thus, prenylated xanthones from Garcinia mangostana exhibit anticancer activity based on interference with the mitochondrial respiration.
Collapse
Affiliation(s)
- Menna El Gaafary
- Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products, Ulm University, D-89081 Ulm, Germany; Department of Analytical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Passent M Abdel-Baki
- Department of Analytical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Ali M El-Halawany
- Department of Analytical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Heba M Mohamed
- Department of Analytical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; Faculty of Health Sciences, Higher Colleges of Technology, Dubai, United Arab Emirates.
| | - Amira Duweb
- Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products, Ulm University, D-89081 Ulm, Germany; Department of Pharmacology, Faculty of Medicine, University of Tripoli, Tripoli, Libya.
| | - Hossam M Abdallah
- Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products, Ulm University, D-89081 Ulm, Germany; Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Gamal A Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Sabrin R M Ibrahim
- Preparatory Year Program, Department of Chemistry, Batterjee Medical College, Jeddah 21442, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| | - Thomas Simmet
- Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products, Ulm University, D-89081 Ulm, Germany.
| | - Tatiana Syrovets
- Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products, Ulm University, D-89081 Ulm, Germany.
| |
Collapse
|
2
|
Yang G, Song Z, Wang R, Sun Y. Apoptotic effect of selenium mushroom extract from Qinba on multiple myeloma cells. Histol Histopathol 2023; 38:1069-1077. [PMID: 36562285 DOI: 10.14670/hh-18-571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Qinba selenium mushroom is a mushroom belonging to the Basidiomycetes family, which is believed to have anti- oxidant, anti-tumoral and anti-mutagenic activities. However, the efficacy of Qinba selenium mushroom against multiple myeloma has not been confirmed. The present study aimed to investigate the apoptotic effect of FA-2-b-β, the selenium mushroom extract from Qinba on multiple myeloma (MM) cells. The MM RPMI-8226 cells were treated with FA-2-b-β at different concentrations and time points. MM RPMI-8226 cell proliferation and apoptosis were detected by the Cell Counting Kit-8 (CCK-8) assay and Annexin V/propidium iodide (PI) assay, RT-QPCR and western blotting analyses were performed to determine the proteins and pathways involved. The results of the present study demonstrated that FA-2-b-β has high anti-proliferative activities and strong pro-apoptotic effects on MM RPMI-8226 cells, and its pharmacological effects on proliferation changes occurred in a dose- and time-dependent manner. In addition, we found that FA-2-b-β was able to induce cell apoptosis and promote cell cycle arrest at G0/G1 phase. In summary, the results illustrate the involvement of FA-2-b-β in mediating G0/G1 cell cycle arrest and apoptosis in MM RPMI-8226 cells, which suggested that FA-2-b-β might have therapeutic potential against multiple myeloma as an effective compound, and may provide useful information for the development of a novel therapeutic target in this area.
Collapse
Affiliation(s)
- Ge Yang
- Department of Hematology, Zhangye People's Hospital Affiliared to HEXI University, Zhangye, Gansu, PR China
| | - Ze Song
- Imaging Teaching and Research Section, Medical College of HEXI University, Zhangye, Gansu, PR China
| | - Rongli Wang
- Department of Hematology, Zhangye People's Hospital Affiliared to HEXI University, Zhangye, Gansu, PR China
| | - Yanqin Sun
- Clinical Lab, Zhangye People's Hospital Affiliared to HEXI University, Zhangye, Gansu, PR China.
- Department of Hematology, Gansu Provincial Hospital, Lanzhou, Gansu, PR China
| |
Collapse
|
3
|
Hamed A, Yamaguchi LF, Valencia Morante EY, Spira B, Stammler HG, El Gaafary M, Ziegler D, Syrovets T, Simmet T, Kato MJ. Cannabinoid-like meroterpenoids from Peperomia incana. PHYTOCHEMISTRY 2023; 207:113551. [PMID: 36509184 DOI: 10.1016/j.phytochem.2022.113551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Ten previously undescribed metabolites were isolated from Peperomia incana (Haw.) A. Dietr. (Piperaceae), among which four contained a chromene moiety, two were identified as meroterpene lactones, and four were cannabinoid-like compounds. While the chemical structures of the compounds were assigned based on HRESIMS and 1D and 2D-NMR spectra analyses, the relative and absolute configurations were assigned from NOE correlations and a combination of ECD data and X-ray single crystal analyses, respectively. In a cytotoxic assay against a panel of seven human cancer cell lines (A549, MDA-MB-231, HeLa, DU 145, 5637, Hep G2, and MIA PaCa-2, which represent non-small cell lung cancer, as well as breast, cervical, prostate, bladder, liver, and pancreas carcinomas, respectively) most of the isolated compounds showed promising cytotoxic activities. The incanachromenes B, and incanabinoids A and C exhibited the highest cytotoxicity toward all tested cancer cell lines with IC50 values in the range of 5.0-10.0 μM, whereas incanolides A, B, and incanabinoid B showed the lowest cytotoxic activity. In addition, incanachromene C and incanabinoid C produced a significant antibacterial effect toward planktonic cells and biofilms of multidrug-resistant Staphylococcus aureus strains.
Collapse
Affiliation(s)
- Abdelaaty Hamed
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City-Cairo, 11884, Egypt; Institute of Chemistry, University of São Paulo, Av.Prof.Lineu Prestes, 748, São Paulo, 05508-000, SP, Brazil
| | - Lydia Fumiko Yamaguchi
- Institute of Chemistry, University of São Paulo, Av.Prof.Lineu Prestes, 748, São Paulo, 05508-000, SP, Brazil
| | - Estela Ynés Valencia Morante
- Institute of Biomedical Sciences, University of São Paulo, Av.Prof.Lineu Prestes, 2415, São Paulo, 05508-000, SP, Brazil
| | - Beny Spira
- Institute of Biomedical Sciences, University of São Paulo, Av.Prof.Lineu Prestes, 2415, São Paulo, 05508-000, SP, Brazil
| | - Hans Georg Stammler
- Inorganic and Structural Chemistry, Bielefeld University, Department of Chemistry, D-33501, Bielefeld, Germany
| | - Menna El Gaafary
- Department of Pharmacognosy, College of Pharmacy, Cairo University, Cairo, 11562, Egypt; Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, D-89081, Germany
| | - David Ziegler
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, D-89081, Germany
| | - Tatiana Syrovets
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, D-89081, Germany
| | - Thomas Simmet
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, D-89081, Germany
| | - Massuo Jorge Kato
- Institute of Chemistry, University of São Paulo, Av.Prof.Lineu Prestes, 748, São Paulo, 05508-000, SP, Brazil.
| |
Collapse
|
4
|
Zou Y, Hu Y, Jiang Z, Chen Y, Zhou Y, Wang Z, Wang Y, Jiang G, Tan Z, Hu F. Exhaled metabolic markers and relevant dysregulated pathways of lung cancer: a pilot study. Ann Med 2022; 54:790-802. [PMID: 35261323 PMCID: PMC8920387 DOI: 10.1080/07853890.2022.2048064] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION The clinical application of lung cancer detection based on breath test is still challenging due to lack of predictive molecular markers in exhaled breath. This study explored potential lung cancer biomarkers and their related pathways using a typical process for metabolomics investigation. MATERIAL AND METHODS Breath samples from 60 lung cancer patients and 176 healthy people were analyzed by GC-MS. The original data were GC-MS peak intensity removing background signal. Differential metabolites were selected after univariate statistical analysis and multivariate statistical analysis based on OPLS-DA and Spearman rank correlation analysis. A multivariate PLS-DA model was established based on differential metabolites for pattern recognition. Subsequently, pathway enrichment analysis was performed on differential metabolites. RESULTS The discriminant capability was assessed by ROC curve of whom the average AUC and average accuracy in 100-fold cross validations were 0.871 and 0.787, respectively. Eight potential biomarkers were involved in a total of 18 metabolic pathways. Among them, 11 metabolic pathways have p-value smaller than .1. DISCUSSION Some pathways among them are related to risk factors or therapies of lung cancer. However, more of them are dysregulated pathways of lung cancer reported in studies based on genome or transcriptome data. CONCLUSION We believe that it opens the possibility of using metabolomics methods to analyze data of exhaled breath and promotes involvement of knowledge dataset to cover more volatile metabolites. CLINICAL SIGNIFICANCE Although a series of related research reported diagnostic models with highly sensitive and specific prediction, the clinical application of lung cancer detection based on breath test is still challenging due to disease heterogeneity and lack of predictive molecular markers in exhaled breath. This study may promote the clinical application of this technique which is suitable for large-scale screening thanks to its low-cost and non-invasiveness. As a result, the mortality of lung cancer may be decreased in future.Key messagesIn the present study, 11 pathways involving 8 potential biomarkers were discovered to be dysregulated pathways of lung cancer.We found that it is possible to apply metabolomics methods in analysis of data from breath test, which is meaningful to discover convinced volatile markers with definite pathological and histological significance.
Collapse
Affiliation(s)
- Yingchang Zou
- School of Electronic Information and Electrical Engineering, Changsha University, Changsha, China.,Hunan Engineering Technology Research Center of Optoelectronic Health Detection, Changsha, China
| | - Yanjie Hu
- Department of Medicine, Zhejiang Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Zaile Jiang
- Tianhe Culture Chain Technologies Co Ltd, Changsha, China
| | - Ying Chen
- School of Electronic Information and Electrical Engineering, Changsha University, Changsha, China
| | - Yuan Zhou
- School of Electronic Information and Electrical Engineering, Changsha University, Changsha, China
| | - Zhiyou Wang
- School of Electronic Information and Electrical Engineering, Changsha University, Changsha, China.,Hunan Engineering Technology Research Center of Optoelectronic Health Detection, Changsha, China
| | - Yu Wang
- Zhijiang Lab, Research Center for Healthcare Data Science, Hangzhou, China
| | - Guobao Jiang
- School of Electronic Information and Electrical Engineering, Changsha University, Changsha, China
| | - Zhiguang Tan
- School of Electronic Information and Electrical Engineering, Changsha University, Changsha, China
| | - Fangrong Hu
- School of Electronic Information and Electrical Engineering, Changsha University, Changsha, China.,Hunan Engineering Technology Research Center of Optoelectronic Health Detection, Changsha, China
| |
Collapse
|
5
|
Arglabin, an EGFR receptor tyrosine kinase inhibitor, suppresses proliferation and induces apoptosis in prostate cancer cells. Biomed Pharmacother 2022; 156:113873. [DOI: 10.1016/j.biopha.2022.113873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 12/09/2022] Open
|
6
|
Sjs B, K K, A P, P H, B SR, Sumathi S. Modulation of gene expression by thymoquinone conjugated Zinc Oxide nanoparticles arrested cell cycle, DNA damage and increased apoptosis in triple negative breast cancer cell line MDA-MB-231. Drug Dev Ind Pharm 2022; 47:1943-1951. [PMID: 35510706 DOI: 10.1080/03639045.2022.2072513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Nanomedicines include the area of science that combines the drugs or diagnostic molecules using nanotechnology approach to improve its ability to target specific cells or tissues. Zinc Oxide (ZnO) nanoparticles are known for its non-toxicity, biocompatibility and biosafety. Thymoquinone (TQ) is used in the present study from the seeds of Nigella sativa (Black cumin seed). ZnO nanoparticles and TQ-ZnO (TQ coated ZnO) nanoparticles were synthesized and its characterization were analyzed using spectrophotometeric analysis and dose of the treatment groups (ZnO, TQ and TQ-ZnO nanoparticles) were optimized in our previous studies. Triple Negative Breast Cancer (TNBC) cells, MDA-MB-231 were exposed to 30 µg/ml dose of TQ coated ZnO nanoparticles which were synthesized and characterized. Their anticancer properties were validated by testing their ability to induce DNA damage, to inhibit cell proliferation, to induce apoptosis and to arrest cell cycle. Modulation of gene expression and their intensities of the fluorogen reflecting the extent of gene expression were quantified using RT-PCR. Furthermore, the Human Breast Cancer PCR array profiles the expression of 84 genes and11 different biological pathways. The results revealed that the TQ-ZnO nanoparticles inhibited the proliferation of cells at synthesis phase and increased DNA damage, which further resulted in apoptosis. PCR array results showed that the combined effect have extensive applications in therapeutics. TQ-ZnO nanoparticles modulated the expression pattern of breast cancer associated genes in TNBC cells.
Collapse
Affiliation(s)
- Banupriya Sjs
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India
| | - Kavithaa K
- Department of Zoology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Poornima A
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India
| | - Haribalan P
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - Sri Renukadevi B
- Department of Food Science and Biotechnology, Sejong University, Gwangjin-gu, Seoul, 05006, Republic of Korea
| | - S Sumathi
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India
| |
Collapse
|
7
|
El Gaafary M, Saber FR, Mahrous EA, Ashour RM, Okba MM, Jin L, Lang SJ, Schmiech M, Simmet T, Syrovets T. The phloroglucinol calcitrinone A, a novel mitochondria-targeting agent, induces cell death in breast cancer cells. Food Chem Toxicol 2022; 162:112896. [PMID: 35227860 DOI: 10.1016/j.fct.2022.112896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/06/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023]
Abstract
Breast cancer is the most common cancer and the leading cause of cancer-related mortality among females worldwide. From the leaves of Callistemon citrinus, we have isolated a novel phloroglucinol dimer, calcitrinone A, and analyzed its potential anticancer activity using the triple-negative breast cancer cell line MDA-MB-231. Calcitrinone A decreased the total intracellular ATP levels, inhibited proliferation, and induced apoptosis in MDA-MB-231 cells, but was less toxic to peripheral blood mononuclear cells. The antiproliferative and apoptosis-inducing effects of calcitrinone A were confirmed in vivo using breast cancer xenografts grown on chick chorioallantoic membranes. Mechanistic analysis showed mitochondrial membrane-potential dissipation and interference with energy-yielding processes resulting in cell accumulation in the S phase of the cell cycle. Seahorse assay analysis revealed an early inhibition of mitochondrial oxidative phosphorylation (OXPHOS). At the molecular level, calcitrinone A inhibited activity of the succinate-coenzyme Q reductase (SQR) (mitochondrial complex II). In silico docking identified the coenzyme Q binding pocket as a possible high affinity binding site for calcitrinone A in SQR. Inhibition of complex II was accompanied by strong elevation of mitochondrial superoxide and cytoplasmic ROS. Calcitrinone A might be a promising anticancer lead compound acting through the interference with the mitochondrial complex II activity.
Collapse
Affiliation(s)
- Menna El Gaafary
- Department of Pharmacognosy, College of Pharmacy, Cairo University, Cairo, 11562, Egypt; Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081, Ulm, Germany
| | - Fatema R Saber
- Department of Pharmacognosy, College of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Engy A Mahrous
- Department of Pharmacognosy, College of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Rehab M Ashour
- Department of Pharmacognosy, College of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Mona M Okba
- Department of Pharmacognosy, College of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Lu Jin
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081, Ulm, Germany
| | - Sophia J Lang
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081, Ulm, Germany
| | - Michael Schmiech
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081, Ulm, Germany
| | - Thomas Simmet
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081, Ulm, Germany.
| | - Tatiana Syrovets
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081, Ulm, Germany.
| |
Collapse
|
8
|
Kohl C, Aung T, Haerteis S, Ignatov A, Ortmann O, Papathemelis T. The 3D in vivo chorioallantoic membrane model and its role in breast cancer research. J Cancer Res Clin Oncol 2022; 148:1033-1043. [PMID: 35122110 DOI: 10.1007/s00432-022-03936-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/24/2022] [Indexed: 02/06/2023]
Abstract
PURPOSE We aimed to evaluate the role of the chorioallantoic membrane model (CAM) in breast cancer research. METHODS The following is an overview of the use of the CAM in the field of breast cancer research based on a PubMed literature query. RESULTS The CAM is a 3D in vivo model that can be used for the analysis of tumor growth, biology and angiogenesis of primary tumor tissue or tumor cell lines. The CAM model has been used in breast cancer research for drug testing, migration assays and the evaluation of vascularization, amongst others. The CAM model is a valuable method that offers a better imitation of the physiological phenomena compared to 2D or 3D in vitro models. CONCLUSION The CAM model has primarily and successfully been utilized for the assessment of the tumor biology of established breast cancer cell lines. Further, the CAM model is a promising method to analyze patient derived primary tumor material and could be used as a "patient-specific 3D-tumor-therapy-model" for the cost-efficient evaluation of anti-cancer drugs to find the optimal treatment for breast cancer patients.
Collapse
Affiliation(s)
- Cynthia Kohl
- Department of Gynecology and Obstetrics, St. Marien Hospital Amberg, 92224, Amberg, Germany.
| | - Thiha Aung
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053, Regensburg, Germany.,Faculty of Applied Healthcare Science, Deggendorf Institute of Technology, 94469, Deggendorf, Germany
| | - Silke Haerteis
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053, Regensburg, Germany
| | - Atanas Ignatov
- Department of Gynecology and Obstetrics, University Hospital Magdeburg, 39120, Magdeburg, Germany
| | - Olaf Ortmann
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053, Regensburg, Germany
| | - Thomas Papathemelis
- Department of Gynecology and Obstetrics, St. Marien Hospital Amberg, 92224, Amberg, Germany
| |
Collapse
|
9
|
Elgaafary M, Fouda AM, Mohamed HM, Hamed A, El-Mawgoud HKA, Jin L, Ulrich J, Simmet T, Syrovets T, El-Agrody AM. Synthesis of β-Enaminonitrile-Linked 8-Methoxy-1 H-Benzo[ f]Chromene Moieties and Analysis of Their Antitumor Mechanisms. Front Chem 2021; 9:759148. [PMID: 34881224 PMCID: PMC8645891 DOI: 10.3389/fchem.2021.759148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/05/2021] [Indexed: 12/04/2022] Open
Abstract
A series of aryl-substituted 3-amino-1-aryl-8-methoxy-1H-benzo[f]chromene-2-carbonitriles (4a-4q) were designed and synthesized via reaction of 6-methoxy-2-naphthol with a mixture of appropriate aromatic aldehydes and malononitrile under microwave conditions. The structures of the novel compounds 4b, 4c, 4f, 4g, 4i, 4l, 4m, and 4o-4q were established according to IR, 1H-NMR, 13C-NMR/13C-NMR-DEPT, and MS. The benzochromene derivative 4c with a single chlorine at the meta position of the phenyl ring and, to a lesser extent, other benzochromenes with monohalogenated phenyl ring (4a, 4c-4f) exhibited the highest cytotoxicity against six human cancer cell lines MDA-MB-231, A549, HeLa, MIA PaCa-2, 5,637, and Hep G2. The mechanisms of the cytotoxic activities of benzochromenes with monohalogenated phenyl ring (4a, 4c-4f) were further analyzed using triple-negative breast cancer cell line MDA-MB-231. Cell cycle analysis showed accumulation of the treated cells in S phase for 4a, 4d-4f, and S-G2/M phases for 4c. In vivo, 4a and 4c-4f inhibited growth, proliferation, and triggered apoptosis in preestablished breast cancer xenografts grown on the chick chorioallantoic membranes while exhibiting low systemic toxicity. Compounds 4a and 4c-4f increased levels of mitochondrial superoxide and decreased mitochondrial membrane potential resulting in initiation of apoptosis as demonstrated by caspase 3/7 activation. In addition, 4c induced general oxidative stress in cancer cells. The SAR study confirmed that halogens of moderate size at meta or para positions of the pendant phenyl ring enhance the cytotoxic activity of 3-amino-1-aryl-8-methoxy-1H-benzo[f]chromene-2-carbonitriles, and these compounds could serve as leads for the development of novel anticancer therapies.
Collapse
Affiliation(s)
- Menna Elgaafary
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
- Department of Pharmacognosy, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed M. Fouda
- Chemistry Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Hany M. Mohamed
- Chemistry Department, Faculty of Science, Jazan University, Jazan, Saudi Arabia
- Chemistry Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Abdelaaty Hamed
- Chemistry Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Heba K. A. El-Mawgoud
- Chemistry Department, Faculty of Women for Arts, Science, and Education, Ain Shams University, Cairo, Egypt
| | - Lu Jin
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Judith Ulrich
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Thomas Simmet
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Tatiana Syrovets
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Ahmed M. El-Agrody
- Chemistry Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
10
|
Elgaafary M, Lehner J, Fouda AM, Hamed A, Ulrich J, Simmet T, Syrovets T, El-Agrody AM. Synthesis and evaluation of antitumor activity of 9-methoxy-1H-benzo[f]chromene derivatives. Bioorg Chem 2021; 116:105402. [PMID: 34670333 DOI: 10.1016/j.bioorg.2021.105402] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/12/2021] [Accepted: 09/30/2021] [Indexed: 02/07/2023]
Abstract
Herein, a series of aryl-substituted derivatives of 3-amino-1-aryl-9-methoxy-1H-benzo[f]chromene-2-carbonitriles (4a-4q) were designed and synthesized via reaction of 7-methoxy-2-naphthol with a mixture of appropriate aromatic aldehydes and malononitrile under microwave conditions. Among the tested benzochromene, the known compound 4e and four novel compounds 4f, 4j, 4k, 4m exhibited the highest cytotoxicity towards a panel of six human cancer cell lines MDA-MB-231, A549, HeLa, MIA PaCa-2, RPMI 7951, and PC-3. Compound 4j with 2,4-dichloro substitution on the pendant phenyl ring exhibited the highest broad-spectrum cytotoxicity towards all tested cancer cell lines. Compounds 4e, 4f, 4j, 4k, 4m were further selected to study the mechanism of cellular toxicity using the triple-negative breast cancer cells MDA-MB-231. Compounds 4e, 4f, 4j, 4k, 4m induced accumulation of the treated MDA-MB-231 cells in the S phase and 4k additionally in the G2/M phase of the cell cycle. Compounds 4e, 4f, 4j, 4k, 4m induced dissipation of mitochondrial transmembrane potential and activation of caspase 3/7 in MDA-MB-231 cells with 4j being one of the most active. In an in vivo model, compound 4j and less efficiently 4e and 4f inhibited growth and proliferation and triggered DNA fragmentation in MDA-MB-231 xenografts grown on chick chorioallantoic membranes. SAR study confirmed that the 2,4-dichloro substitution pattern on the pendant phenyl ring enhanced the cytotoxic activity of benzochromene.
Collapse
Affiliation(s)
- Menna Elgaafary
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm D-89081, Germany; Department of Pharmacognosy, College of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Julia Lehner
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm D-89081, Germany
| | - Ahmed M Fouda
- Chemistry Department, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Abdelaaty Hamed
- Chemistry Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| | - Judith Ulrich
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm D-89081, Germany
| | - Thomas Simmet
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm D-89081, Germany
| | - Tatiana Syrovets
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm D-89081, Germany.
| | - Ahmed M El-Agrody
- Chemistry Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt.
| |
Collapse
|
11
|
3-Alkenyl-2-oxindoles: Synthesis, antiproliferative and antiviral properties against SARS-CoV-2. Bioorg Chem 2021; 114:105131. [PMID: 34243074 PMCID: PMC8241580 DOI: 10.1016/j.bioorg.2021.105131] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/24/2021] [Indexed: 01/25/2023]
Abstract
Sets of 3-alkenyl-2-oxindoles (6,10,13) were synthesized in a facile synthetic pathway through acid dehydration (EtOH/HCl) of the corresponding 3-hydroxy-2-oxoindolines (5,9,12). Single crystal (10a,c) and powder (12a,26f) X-ray studies supported the structures. Compounds 6c and 10b are the most effective agents synthesized (about 3.4, 3.3 folds, respectively) against PaCa2 (pancreatic) cancer cell line relative to the standard reference used (Sunitinib). Additionally, compound 10b reveals antiproliferative properties against MCF7 (breast) cancer cell with IC50 close to that of Sunitinib. CAM testing reveals that compounds 6 and 10 demonstrated qualitative and quantitative decreases in blood vessel count and diameter with efficacy comparable to that of Sunitinib, supporting their anti-angiogenic properties. Kinase inhibitory properties support their multi-targeted inhibitory activities against VEGFR-2 and c-kit in similar behavior to that of Sunitinib. Cell cycle analysis studies utilizing MCF7 exhibit that compound 6b arrests the cell cycle at G1/S phase while, 10b reveals accumulation of the tested cell at S phase. Compounds 6a and 10b reveal potent antiviral properties against SARS-CoV-2 with high selectivity index relative to the standards (hydroxychloroquine, chloroquine). Safe profile of the potent synthesized agents, against normal cells (VERO-E6, RPE1), support the possible development of better hits based on the attained observations.
Collapse
|
12
|
Preis E, Schulze J, Gutberlet B, Pinnapireddy SR, Jedelská J, Bakowsky U. The chorioallantoic membrane as a bio-barrier model for the evaluation of nanoscale drug delivery systems for tumour therapy. Adv Drug Deliv Rev 2021; 174:317-336. [PMID: 33905805 DOI: 10.1016/j.addr.2021.04.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/29/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023]
Abstract
In 2010, the European Parliament and the European Union adopted a directive on the protection of animals used for scientific purposes. The directive aims to protect animals in scientific research, with the final goal of complete replacement of procedures on live animals for scientific and educational purposes as soon as it is scientifically viable. Furthermore, the directive announces the implementation of the 3Rs principle: "When choosing methods, the principles of replacement, reduction and refinement should be implemented through a strict hierarchy of the requirement to use alternative methods." The visibility, accessibility, and the rapid growth of the chorioallantoic membrane (CAM) offers a clear advantage for various manipulations and for the simulation of different Bio-Barriers according to the 3R principle. The extensive vascularisation on the CAM provides an excellent substrate for the cultivation of tumour cells or tumour xenografts which could be used for the therapeutic evaluation of nanoscale drug delivery systems. The tumour can be targeted either by topical application, intratumoural injection or i.v. injection. Different application sites and biological barriers can be examined within a single model.
Collapse
Affiliation(s)
- Eduard Preis
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Jan Schulze
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Bernd Gutberlet
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Shashank Reddy Pinnapireddy
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; CSL Behring Innovation GmbH, Emil-von-Behring-Str. 76, 35041 Marburg, Germany
| | - Jarmila Jedelská
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; Center for Tumor Biology and Immunology, Core Facility for Small Animal MRI, Hans-Meerwein Str. 3, 35043 Marburg, Germany
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany.
| |
Collapse
|
13
|
Krasic J, Skara L, Ulamec M, Katusic Bojanac A, Dabelic S, Bulic-Jakus F, Jezek D, Sincic N. Teratoma Growth Retardation by HDACi Treatment of the Tumor Embryonal Source. Cancers (Basel) 2020; 12:cancers12113416. [PMID: 33217978 PMCID: PMC7698704 DOI: 10.3390/cancers12113416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/09/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Testicular germ cell tumors are the most common neoplasms in young male populations, with a rising incidence. Among them, teratomas may often be very aggressive and resistant to therapy. Our aim was to investigate the impact of two potential anti-tumor epigenetic drugs (Valproate and Trichostatin A) in a mammalian model of teratoma development from an early trilaminar mouse embryo. Both drugs applied to the embryonic tissue had a significant negative impact on the teratoma growth in a three-dimensional in vitro culture. However, Trichostatin A did not diminish some potentially dangerous features of teratomas in contrast to Valproate. This research is an original contribution to the basic knowledge of the origin and development of teratomas. Such knowledge is necessary for envisioning therapeutic strategies against human testicular tumors. Abstract Among testicular germ cell tumors, teratomas may often be very aggressive and therapy-resistant. Our aim was to investigate the impact of histone deacetylase inhibitors (HDACi) on the in vitro growth of experimental mouse teratoma by treating their embryonic source, the embryo-proper, composed only of the three germ layers. The growth of teratomas was measured for seven days, and histopathological analysis, IHC/morphometry quantification, gene enrichment analysis, and qPCR analysis on a selected panel of pluripotency and early differentiation genes followed. For the first time, within teratomas, we histopathologically assessed the undifferentiated component containing cancer stem cell-like cells (CSCLCs) and differentiated components containing numerous lymphocytes. Mitotic indices were higher than apoptotic indices in both components. Both HDACi treatments of the embryos-proper significantly reduced teratoma growth, although this could be related neither to apoptosis nor proliferation. Trichostatin A increased the amount of CSCLCs, and upregulated the mRNA expression of pluripotency/stemness genes as well as differentiation genes, e.g., T and Eomes. Valproate decreased the amount of CSCLCs, and downregulated the expressions of pluripotency/stemness and differentiation genes. In conclusion, both HDACi treatments diminished the inherent tumorigenic growth potential of the tumor embryonal source, although Trichostatin A did not diminish the potentially dangerous expression of cancer-related genes and the amount of CSCLC.
Collapse
Affiliation(s)
- Jure Krasic
- Department of Medical Biology, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia; (J.K.); (L.S.); (A.K.B.); (F.B.-J.)
- Scientific Group for Research on Epigenetic Biomarkers, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia;
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia;
| | - Lucija Skara
- Department of Medical Biology, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia; (J.K.); (L.S.); (A.K.B.); (F.B.-J.)
- Scientific Group for Research on Epigenetic Biomarkers, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia;
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia;
| | - Monika Ulamec
- Scientific Group for Research on Epigenetic Biomarkers, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia;
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia;
- Ljudevit Jurak Clinical Department of Pathology and Cytology, Sestre Milosrdnice University Hospital Center, 10 000 Zagreb, Croatia
- Department of Pathology, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia
| | - Ana Katusic Bojanac
- Department of Medical Biology, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia; (J.K.); (L.S.); (A.K.B.); (F.B.-J.)
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia;
| | - Sanja Dabelic
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10 000 Zagreb, Croatia;
| | - Floriana Bulic-Jakus
- Department of Medical Biology, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia; (J.K.); (L.S.); (A.K.B.); (F.B.-J.)
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia;
| | - Davor Jezek
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia;
- Department of Histology and Embryology, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia
| | - Nino Sincic
- Department of Medical Biology, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia; (J.K.); (L.S.); (A.K.B.); (F.B.-J.)
- Scientific Group for Research on Epigenetic Biomarkers, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia;
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia;
- Correspondence: ; Tel.: +385-1-45-66-806; Fax: +385-45-960-199
| |
Collapse
|
14
|
Lang SJ, Schmiech M, Hafner S, Paetz C, Werner K, El Gaafary M, Schmidt CQ, Syrovets T, Simmet T. Chrysosplenol d, a Flavonol from Artemisia annua, Induces ERK1/2-Mediated Apoptosis in Triple Negative Human Breast Cancer Cells. Int J Mol Sci 2020; 21:ijms21114090. [PMID: 32521698 PMCID: PMC7312517 DOI: 10.3390/ijms21114090] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/01/2020] [Accepted: 06/04/2020] [Indexed: 01/01/2023] Open
Abstract
Triple negative human breast cancer (TNBC) is an aggressive cancer subtype with poor prognosis. Besides the better-known artemisinin, Artemisia annua L. contains numerous active compounds not well-studied yet. High-performance liquid chromatography coupled with diode-array and mass spectrometric detection (HPLC-DAD-MS) was used for the analysis of the most abundant compounds of an Artemisia annua extract exhibiting toxicity to MDA-MB-231 TNBC cells. Artemisinin, 6,7-dimethoxycoumarin, arteannuic acid were not toxic to any of the cancer cell lines tested. The flavonols chrysosplenol d and casticin selectively inhibited the viability of the TNBC cell lines, MDA-MB-231, CAL-51, CAL-148, as well as MCF7, A549, MIA PaCa-2, and PC-3. PC-3 prostate cancer cells exhibiting high basal protein kinase B (AKT) and no ERK1/2 activation were relatively resistant, whereas MDA-MB-231 cells with high basal ERK1/2 and low AKT activity were more sensitive to chrysosplenol d treatment. In vivo, chrysosplenol d and casticin inhibited MDA-MB-231 tumor growth on chick chorioallantoic membranes. Both compounds induced mitochondrial membrane potential loss and apoptosis. Chrysosplenol d activated ERK1/2, but not other kinases tested, increased cytosolic reactive oxygen species (ROS) and induced autophagy in MDA-MB-231 cells. Lysosomal aberrations and toxicity could be antagonized by ERK1/2 inhibition. The Artemisia annua flavonols chrysosplenol d and casticin merit exploration as potential anticancer therapeutics.
Collapse
Affiliation(s)
- Sophia J. Lang
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081 Ulm, Germany; (S.J.L.); (M.S.); (S.H.); (K.W.); (M.E.G.); (C.Q.S.)
| | - Michael Schmiech
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081 Ulm, Germany; (S.J.L.); (M.S.); (S.H.); (K.W.); (M.E.G.); (C.Q.S.)
| | - Susanne Hafner
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081 Ulm, Germany; (S.J.L.); (M.S.); (S.H.); (K.W.); (M.E.G.); (C.Q.S.)
| | - Christian Paetz
- Research Group Biosynthesis/Nuclear Magnetic Resonance, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany;
| | - Katharina Werner
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081 Ulm, Germany; (S.J.L.); (M.S.); (S.H.); (K.W.); (M.E.G.); (C.Q.S.)
| | - Menna El Gaafary
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081 Ulm, Germany; (S.J.L.); (M.S.); (S.H.); (K.W.); (M.E.G.); (C.Q.S.)
- Department of Pharmacognosy, College of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Christoph Q. Schmidt
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081 Ulm, Germany; (S.J.L.); (M.S.); (S.H.); (K.W.); (M.E.G.); (C.Q.S.)
| | - Tatiana Syrovets
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081 Ulm, Germany; (S.J.L.); (M.S.); (S.H.); (K.W.); (M.E.G.); (C.Q.S.)
- Correspondence: (T.S.); (T.S.); Tel.: +49-731-500-65604 (T.S.); +49-731-500-65600 (T.S.)
| | - Thomas Simmet
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081 Ulm, Germany; (S.J.L.); (M.S.); (S.H.); (K.W.); (M.E.G.); (C.Q.S.)
- Correspondence: (T.S.); (T.S.); Tel.: +49-731-500-65604 (T.S.); +49-731-500-65600 (T.S.)
| |
Collapse
|
15
|
A Naturally Derived Carrier for Photodynamic Treatment of Squamous Cell Carcinoma: In Vitro and In Vivo Models. Pharmaceutics 2020; 12:pharmaceutics12060494. [PMID: 32485800 PMCID: PMC7355629 DOI: 10.3390/pharmaceutics12060494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 11/17/2022] Open
Abstract
Photodynamic therapy (PDT) is a non-invasive treatment strategy that includes the combination of three components-a photosensitizer, a light source, and tissue oxygen. PDT can be used for the treatment of skin diseases such as squamous cell carcinoma. The photosensitizer used in this study is the naturally derived chlorophyll derivative chlorin e6 (Ce6), which was encapsulated in ultradeformable ethosomes. Singlet oxygen production by Ce6 upon laser light irradiation was not significantly affected by encapsulation into ethosomes. PDT of squamous cell carcinoma cells treated with Ce6 ethosomes triggered increased mitochondrial superoxide levels and increased caspase 3/7 activity, resulting in concentration- and light-dose-dependent cytotoxicity. Ce6 ethosomes showed good penetration into 3D squamous cell carcinoma spheroids, which upon laser light irradiation exhibited reduced size, proliferation, and viability. The PDT effect of Ce6 ethosomes was specific and showed higher cytotoxicity against squamous cell carcinoma spheroids compared to normal skin fibroblast spheroids. In addition, PDT treatment of squamous cell carcinoma xenografts grown on chorioallantoic membranes of chick eggs (CAM) exhibited reduced expression of Ki-67 proliferation marker and increased terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) staining, indicating reduced proliferation and activation of apoptosis, respectively. The results demonstrate that Ce6-loaded ethosomes represent a convenient formulation for photodynamic treatment of squamous cell carcinoma.
Collapse
|