1
|
Peng X, Zeng Z, Hassan S, Xue Y. The potential of marine natural Products: Recent Advances in the discovery of Anti-Tuberculosis agents. Bioorg Chem 2024; 151:107699. [PMID: 39128242 DOI: 10.1016/j.bioorg.2024.107699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/30/2024] [Accepted: 08/04/2024] [Indexed: 08/13/2024]
Abstract
Tuberculosis (TB) is an infectious airborne disease caused by Mycobacterium tuberculosis. Since the 1990 s, many countries have made significant progress in reducing the incidence of TB and associated mortality by improving health services and strengthening surveillance systems. Nevertheless, due to the emergence of multidrug-resistant TB (MDR-TB), alongside extensively drug-resistant TB (XDR-TB) and TB-HIV co-infection, TB remains one of the lead causes of death arising from infectious disease worldwide, especially in developing countries and disadvantaged populations. Marine natural products (MNPs) have received a large amount of attention in recent years as a source of pharmaceutical constituents and lead compounds, and are expected to offer significant resources and potential in the fields of drug development and biotechnology in the years to come. This review summarizes 169 marine natural products and their synthetic derivatives displaying anti-TB activity from 2013 to the present, including their structures, sources and functions. Partial synthetic information and structure-activity relationships (SARs) are also included.
Collapse
Affiliation(s)
- Xinyu Peng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen 518107, China
| | - Ziqian Zeng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen 518107, China
| | - Said Hassan
- Institute of Biotechnology and Microbiology, Bacha Khan University, Charsadda 24540, Pakistan
| | - Yongbo Xue
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen 518107, China.
| |
Collapse
|
2
|
Gopika B, Ingaladal N, Reshma MV, Lankalapalli RS. Identification of heptonic acid γ-lactone by its unusual peracetylated derivative from Amorphophallus paeoniifolius. Nat Prod Res 2024:1-4. [PMID: 39069740 DOI: 10.1080/14786419.2024.2386131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/13/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
The methanolic extract of Amorphophallus paeoniifolius was peracetylated to obtain an unusual peracetylated γ-lactone backbone. Structure elucidation revealed that this compound is an outcome of the chemical transformation of heptonic acid γ-lactone.
Collapse
Affiliation(s)
- Biju Gopika
- Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| | - Nagaraja Ingaladal
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, India
| | - M V Reshma
- Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| | - Ravi S Lankalapalli
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, India
| |
Collapse
|
3
|
Hardhiyuna M, Arbi UY, Zuraida Z, Ahmadi P. Aaptamine-rich Fraction from the Indonesian Marine Sponge, Aaptos suberitoides, Exhibits a Cytotoxic Effect on DLD-1 Colorectal Cancer Cells. Asian Pac J Cancer Prev 2024; 25:1737-1743. [PMID: 38809646 PMCID: PMC11318826 DOI: 10.31557/apjcp.2024.25.5.1737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024] Open
Abstract
OBJECTIVE This study aimed to investigate the cytotoxicity effect of the ethyl acetate extract of Aaptos suberitoides on colorectal cancer cells (DLD-1) and murine fibroblast cells (NIH-3T3). METHODS A. suberitoides was collected from Putus Island, Bunaken National Park, North Sulawesi, Indonesia, and was processed with maceration and ethyl acetate extraction. The sponge extract was characterized based on Thin Layer Chromatography (TLC) and then identified by using LCMS/MS analysis. DLD-1 and NIH-3T3 cells were treated with the ethyl acetate extract and then followed by 3- [4, 5-dimethylthiazol-2-yl] -2.5 diphenyl tetrazolium bromide (MTT) assay to assess their cytotoxicity effect. RESULTS LCMS/MS analysis showed that the most abundant compounds in this extract were identified as aaptamine (1). Furthermore, this study revealed that the active ethyl acetate fraction of A. suberitoides has cytotoxic effects in colorectal cancer DLD-1 cells with an IC50 value of 9.597 µg/mL, higher than NIH-3T3 cells with an IC50 value of 12.23 µg/mL Thus, the active ethyl acetate fraction of A. suberitoides is considered more toxic to cancer cells than normal cells. CONCLUSION This study provides the first evidence to support the role of the ethyl acetate extract of A. suberitoides sponge extracts to be developed as a colorectal anticancer agent.
Collapse
Affiliation(s)
- Mutia Hardhiyuna
- Research Center for Vaccine and Drugs, Research Organization for Health, National Research and Innovation Agency (BRIN), Jl. Raya Bogor Km.46, Cibinong, 16911, Indonesia.
| | - Ucu Yanu Arbi
- Research Center for Oceanography, National Research and Innovation Agency (BRIN), Jl. Pasir Putih Raya No.1, North Jakarta, 14430, Indonesia.
| | - Zuraida Zuraida
- Research Center for Vaccine and Drugs, Research Organization for Health, National Research and Innovation Agency (BRIN), Jl. Raya Bogor Km.46, Cibinong, 16911, Indonesia.
| | - Peni Ahmadi
- Research Center for Vaccine and Drugs, Research Organization for Health, National Research and Innovation Agency (BRIN), Jl. Raya Bogor Km.46, Cibinong, 16911, Indonesia.
| |
Collapse
|
4
|
Vitali Forconesi G, Basso A, Banfi L, Gugliotta D, Lambruschini C, Nola M, Riva R, Rocca V, Moni L. Total Synthesis of 4- epi-Bengamide E. Molecules 2024; 29:1715. [PMID: 38675534 PMCID: PMC11052282 DOI: 10.3390/molecules29081715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Bengamide E is a bioactive natural product that was isolated from Jaspidae sponges by Crews and co-workers in 1989. It displays a wide range of biological activities, including antitumor, antibiotic, and anthelmintic properties. With the aim of investigating the structural feature essential for their activity, several total syntheses of Bengamide E and its analogues have been reported in the literature. Nevertheless, no synthesis of the stereoisomer with modification of its configuration at C-4 carbon has been reported so far. Here, we report the first total synthesis of the 4-epi-Bengamide E. Key reactions in the synthesis include a chemoenzimatic desymmetrization of biobased starting materials and a diastereoselective Passerini reaction using a chiral, enantiomerically pure aldehyde, and a lysine-derived novel isocyanide.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Lisa Moni
- Department of Chemistry and Industrial Chemistry, University of Genova, Via Dodecaneso, 31, 16146 Genova, Italy; (G.V.F.); (A.B.); (L.B.); (D.G.); (C.L.); (M.N.); (R.R.); (V.R.)
| |
Collapse
|
5
|
Ortigosa-Palomo A, Porras-Alcalá C, Quiñonero F, Moya-Utrera F, Ortiz R, López-Romero JM, Melguizo C, Sarabia F, Prados J. Antitumor activity of bengamide ii in a panel of human and murine tumor cell lines: In vitro and in vivo determination of effectiveness against lung cancer. Biomed Pharmacother 2023; 168:115789. [PMID: 37924787 DOI: 10.1016/j.biopha.2023.115789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023] Open
Abstract
Lung cancer is the most commonly diagnosed cancer and the one that causes the most deaths worldwide, so there is a need for therapies that improve survival rates. Products derived from marine organisms are a source of novel and potent antitumor compounds, but they present the great obstacle of their obtaining from the natural environment and the problems associated with the synthesis and biological effects of chemical analogues. In this work, a Bengamide analogue (Bengamide II) was chemically synthesized and in vitro and in vivo studies were performed to determine its antitumor activity and mechanisms of action. It was shown to have potent antiproliferative activity in lung cancer lines in 2D and 3D models. In addition, Bengamide II-treated cells showed G2/M and G0/G1 cell cycle arrest, together with a decrease in the proliferation marker Ki67. As for the mechanism of action, the treatment was associated with increased LC3-II expression and production of acidic vesicles signaling autophagy. In addition, Bengamide II treatment was associated with caspase-3 activation and DNA fragmentation related to apoptosis. Furthermore, a reduction of VEGFA expression, related to angiogenesis, was also observed. In vivo studies showed that Bengamide II markedly reduced tumor volume and metastases increasing survival. Additionally, it revealed no systemic toxicity in in vivo models at the therapeutic doses used, which is essential for its future clinical use. Taken together, the chemically synthesized bengamide analogue Bengamide II, is a promising drug for lung cancer treatment showing relevant antitumor activity and significant safety.
Collapse
Affiliation(s)
- Alba Ortigosa-Palomo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Cristina Porras-Alcalá
- Department of Organic Chemistry, Faculty of Sciences, University of Malaga, 29071 Málaga, Spain
| | - Francisco Quiñonero
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Federico Moya-Utrera
- Department of Organic Chemistry, Faculty of Sciences, University of Malaga, 29071 Málaga, Spain
| | - Raúl Ortiz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain.
| | - Juan M López-Romero
- Department of Organic Chemistry, Faculty of Sciences, University of Malaga, 29071 Málaga, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Francisco Sarabia
- Department of Organic Chemistry, Faculty of Sciences, University of Malaga, 29071 Málaga, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| |
Collapse
|
6
|
Quiñonero F, Mesas C, Muñoz-Gámez JA, Jiménez-Luna C, Perazzoli G, Prados J, Melguizo C, Ortiz R. PARP1 inhibition by Olaparib reduces the lethality of pancreatic cancer cells and increases their sensitivity to Gemcitabine. Biomed Pharmacother 2022; 155:113669. [PMID: 36113257 DOI: 10.1016/j.biopha.2022.113669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Pancreatic cancer (PC) is one of the tumors with the lowest survival rates due to the poor efficacy of the treatments currently used. Gemcitabine (GMZ), one of the chemotherapeutic agents employed when the tumor is unresectable, frequently fails due to the development of drug resistance. PARP1 is a relevant protein in this phenomenon and appears to be related to cancer progression in several types of tumors, including PC. To determine the relevance of PARP1 in the development and treatment of PC, we used the Panc02 cell line to generate modified PC cells with stably inhibited PARP1 expression (Panc02-L) and used GMZ, Olaparib (OLA) and GMZ+OLA as therapeutic strategies. Viability, radiosensitization, angiogenesis, migration, colony formation, TUNEL, cell cycle, multicellular tumorsphere induction and in vivo assays were performed to test the influence of PARP1 inhibition on resistance phenomena and tumor progression. We demonstrated that stable inhibition or pharmacological blockade of PARP1 using OLA-sensitized Panc02 cells against GMZ significantly decreased their IC50, reducing colony formation capacity, cell migration and vessel formation (angiogenesis) in vitro. Furthermore, in vivo analyses revealed that Panc02-L-derived (PARP1-inhibited) tumors showed less growth and lethality, and that GMZ+OLA treatment significantly reduced tumor growth. In conclusion, PARP1 inhibition, both alone and in combination with GMZ, enhances the effectiveness of this chemotherapeutic agent and represents a promising strategy for the treatment of PC.
Collapse
Affiliation(s)
- Francisco Quiñonero
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada 18071, Spain; Instituto Biosanitario de Granada (ibs. GRANADA), Granada 18014, Spain
| | - Cristina Mesas
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada 18071, Spain; Instituto Biosanitario de Granada (ibs. GRANADA), Granada 18014, Spain
| | - Jose A Muñoz-Gámez
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain
| | - Cristina Jiménez-Luna
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada 18071, Spain; Instituto Biosanitario de Granada (ibs. GRANADA), Granada 18014, Spain
| | - Gloria Perazzoli
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada 18071, Spain; Instituto Biosanitario de Granada (ibs. GRANADA), Granada 18014, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada 18071, Spain; Instituto Biosanitario de Granada (ibs. GRANADA), Granada 18014, Spain.
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada 18071, Spain; Instituto Biosanitario de Granada (ibs. GRANADA), Granada 18014, Spain
| | - Raul Ortiz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada 18071, Spain; Instituto Biosanitario de Granada (ibs. GRANADA), Granada 18014, Spain
| |
Collapse
|
7
|
The Development of the Bengamides as New Antibiotics against Drug-Resistant Bacteria. Mar Drugs 2022; 20:md20060373. [PMID: 35736176 PMCID: PMC9228497 DOI: 10.3390/md20060373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
The bengamides comprise an interesting family of natural products isolated from sponges belonging to the prolific Jaspidae family. Their outstanding antitumor properties, coupled with their unique mechanism of action and unprecedented molecular structures, have prompted an intense research activity directed towards their total syntheses, analogue design, and biological evaluations for their development as new anticancer agents. Together with these biological studies in cancer research, in recent years, the bengamides have been identified as potential antibiotics by their impressive biological activities against various drug-resistant bacteria such as Mycobacterium tuberculosis and Staphylococcus aureus. This review reports on the new advances in the chemistry and biology of the bengamides during the last years, paying special attention to their development as promising new antibiotics. Thus, the evolution of the bengamides from their initial exploration as antitumor agents up to their current status as antibiotics is described in detail, highlighting the manifold value of these marine natural products as valid hits in medicinal chemistry.
Collapse
|
8
|
Jia Z, Zhang Z, Tian Q, Wu H, Xie Y, Li A, Zhang H, Yang Z, Zhang X. Integration of transcriptomics and metabolomics reveals anlotinib-induced cytotoxicity in colon cancer cells. Gene 2021; 786:145625. [PMID: 33798683 DOI: 10.1016/j.gene.2021.145625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/17/2021] [Accepted: 03/26/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Mounting evidences suggested that anlotinib exhibits effective anti-tumor activity in various cancer types, such as lung cancer, glioblastoma and medullary thyroid cancer. However, its function in colon cancer remains to be further revealed. METHODS Colon cancer cells (HCT-116) were treated with or without anlotinib. Transcript and metabolite data were generated through RNA sequencing and liquid chromatography-tandem mass spectrometry, respectively. The integrated analysis transcriptomics and metabolomics was conducted using R programs and online tools, including ClusterProfiler R program, GSEA, Prognoscan and Cytoscape. RESULTS We found that differentially expressed genes (DEGs) were mainly involved in metabolic pathways and ribosome pathway. Structural maintenance of chromosome 3 (SMC3), Topoisomerase II alpha (TOP2A) and Glycogen phosphorylase B (PYGB) are the most significant DEGs which bring poor clinical prognosis in colon cancer. The analysis of metabolomics presented that most of the differentially accumulated metabolites (DAMs) were amino acids, such as L-glutamine, DL-serine and aspartic acid. The joint analysis of DEGs and DAMs showed that they were mainly involved in protein digestion and absorption, ABC transporters, central carbon metabolism, choline metabolism and Gap junction. Anlotinib affected protein synthesis and energy supporting of colon cancer cells by regulating amino acid metabolism. CONCLUSIONS Anlotinib has a significant effect on colon cancer in both transcriptome and metabolome. Our research will provide possible targets for colon cancer treatment using anlotinib.
Collapse
Affiliation(s)
- Zhenxian Jia
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China; College of Life Science, North China University of Science and Technology, Tangshan 063210, China
| | - Zhi Zhang
- Affliated Tangshan Gongren Hospital, North China University of Science and Technology, Tangshan 063000, China
| | - Qinqin Tian
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China; College of Life Science, North China University of Science and Technology, Tangshan 063210, China
| | - Hongjiao Wu
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China; College of Life Science, North China University of Science and Technology, Tangshan 063210, China
| | - Yuning Xie
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China; College of Life Science, North China University of Science and Technology, Tangshan 063210, China
| | - Ang Li
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China; College of Life Science, North China University of Science and Technology, Tangshan 063210, China
| | - Hongmei Zhang
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China; College of Life Science, North China University of Science and Technology, Tangshan 063210, China
| | - Zhenbang Yang
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Xuemei Zhang
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China; College of Life Science, North China University of Science and Technology, Tangshan 063210, China.
| |
Collapse
|