1
|
Wu Z, Li XM, Yang SQ, Wang BG, Li X. Antibacterial Polyketides from the Deep-Sea Cold-Seep-Derived Fungus Talaromyces sp. CS-258. Mar Drugs 2024; 22:204. [PMID: 38786595 PMCID: PMC11122946 DOI: 10.3390/md22050204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Thirty-two fungal polyketide derivatives, including eleven new compounds, namely (3R,5'R)-5-hydroxytalaroflavone (1), talaroisochromenols A-C (3, 5, and 11), (8R,9R,10aR)-5-hydroxyaltenuene (13), (8R,9R,10aS)-5-hydroxyaltenuene (14), (8R,9S,10aR)-5-hydroxyaltenuene (15), nemanecins D and E (25 and 26), 2,5-dimethyl-8-iodochromone (27), and talarofurolactone A (29), together with one new naturally occurring but previously synthesized metabolite, 6-hydroxy-4-methoxycoumarin (28), were isolated and identified from the deep-sea cold-seep-derived fungus Talaromyces sp. CS-258. Among them, racemic ((±)-11) or epimeric (13-15, 25, and 26) mixtures were successfully separated by chiral or gradient elution HPLC. Meanwhile, compound 27 represents a rarely reported naturally occurring iodinated compound. Their planar structures as well as absolute configurations were determined by extensive analysis via NMR, MS, single-crystal X-ray diffraction, Mosher's method, and ECD or NMR calculation (with DP4+ probability analysis). Possible biosynthetic routes of some isolated compounds, which are related to chromone or isochromone biosynthetic pathways, were put forward. The biological analysis results revealed that compounds 7, 9, 10, 18-22, 24, 30, and 31 showed broad-spectrum antibacterial activities against several human and aquatic pathogens with MIC ranges of 0.5-64 μg/mL.
Collapse
Affiliation(s)
- Zhenger Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China; (Z.W.); (X.-M.L.); (S.-Q.Y.)
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| | - Xiao-Ming Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China; (Z.W.); (X.-M.L.); (S.-Q.Y.)
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| | - Sui-Qun Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China; (Z.W.); (X.-M.L.); (S.-Q.Y.)
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| | - Bin-Gui Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China; (Z.W.); (X.-M.L.); (S.-Q.Y.)
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Wenhai Road 1, Qingdao 266237, China
| | - Xin Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China; (Z.W.); (X.-M.L.); (S.-Q.Y.)
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Wenhai Road 1, Qingdao 266237, China
| |
Collapse
|
2
|
Wasim M, Ghaffar U, Javed MR, Nawaz H, Majeed MI, Ijaz A, Ishtiaq S, Rehman N, Razaq R, Younas S, Bano A, Kanwal N, Imran M. Surface-Enhanced Raman Spectroscopy for Monitoring the Biochemical Changes Due to DNA Mutations Induced by CRISPR-Cas9 Genome Editing in the Aspergillus niger Fungus. ACS OMEGA 2024; 9:15202-15209. [PMID: 38585125 PMCID: PMC10993282 DOI: 10.1021/acsomega.3c09563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/22/2024] [Accepted: 03/04/2024] [Indexed: 04/09/2024]
Abstract
In this study, surface-enhanced Raman spectroscopy (SERS) technique, along with principal component analysis (PCA) and partial least-squares discriminant analysis (PLS-DA), is used as a simple, quick, and cost-effective analysis method for identifying biochemical changes occurring due to induced mutations in the Aspergillus niger fungus strain. The goal of this study is to identify the biochemical changes in the mutated fungal cells (cell mass) as compared to the control/nonmutated cells. Furthermore, multivariate data analysis tools, including PCA and PLS-DA, are used to further confirm the differentiating SERS spectral features among fungal samples. The mutations are caused in A. niger by the clustered regularly interspaced palindromic repeat CRISPR-Cas9 genomic editing method to improve their biotechnological potential for the production of cellulase enzyme. SERS was employed to detect the changes in the cells of mutated A. niger fungal strains, including one mutant producing low levels of an enzyme and another mutant producing high levels of the enzyme as a result of mutation as compared with an unmutated fungal strain as a control sample. The distinctive features of SERS corresponding to nucleic acids and proteins appear at 546, 622, 655, 738, 802, 835, 959, 1025, 1157, 1245, 1331, 1398, and 1469 cm-1. Furthermore, PLS-DA is used to confirm the 89% accuracy, 87.7% precision, 87% sensitivity, and 88.9% specificity of this method, and the value of the area under the curve (AUROC) is 0.67. It has been shown that surface-enhanced Raman spectroscopy is an effective method for identifying and differentiating biochemical changes in genome-modified fungal samples.
Collapse
Affiliation(s)
- Muhammad Wasim
- Department
of Chemistry, University of Agriculture
Faisalabad, Faisalabad 38000, Pakistan
| | - Usman Ghaffar
- Department
of Chemistry, University of Agriculture
Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Rizwan Javed
- Biocatalysis
and Protein Engineering Research Group (BPERG), Department of Bioinformatics
and Biotechnology, Government College University
Faisalabad (GCUF), Allama
Iqbal Road, Faisalabad 38000, Pakistan
| | - Haq Nawaz
- Department
of Chemistry, University of Agriculture
Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Irfan Majeed
- Department
of Chemistry, University of Agriculture
Faisalabad, Faisalabad 38000, Pakistan
| | - Anam Ijaz
- Biocatalysis
and Protein Engineering Research Group (BPERG), Department of Bioinformatics
and Biotechnology, Government College University
Faisalabad (GCUF), Allama
Iqbal Road, Faisalabad 38000, Pakistan
| | - Shazra Ishtiaq
- Department
of Chemistry, University of Agriculture
Faisalabad, Faisalabad 38000, Pakistan
| | - Nimra Rehman
- Department
of Chemistry, University of Agriculture
Faisalabad, Faisalabad 38000, Pakistan
| | - Rabeea Razaq
- Department
of Chemistry, University of Agriculture
Faisalabad, Faisalabad 38000, Pakistan
| | - Sobia Younas
- Department
of Chemistry, University of Agriculture
Faisalabad, Faisalabad 38000, Pakistan
| | - Aqsa Bano
- Department
of Chemistry, University of Agriculture
Faisalabad, Faisalabad 38000, Pakistan
| | - Naeema Kanwal
- Department
of Chemistry, University of Agriculture
Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Imran
- Department
of Chemistry, Faculty of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| |
Collapse
|
3
|
Xu HQ, Xiao H, Bu JH, Hong YF, Liu YH, Tao ZY, Ding SF, Xia YT, Wu E, Yan Z, Zhang W, Chen GX, Zhu F, Tao L. EMNPD: a comprehensive endophytic microorganism natural products database for prompt the discovery of new bioactive substances. J Cheminform 2023; 15:115. [PMID: 38017550 PMCID: PMC10683116 DOI: 10.1186/s13321-023-00779-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/05/2023] [Indexed: 11/30/2023] Open
Abstract
The discovery and utilization of natural products derived from endophytic microorganisms have garnered significant attention in pharmaceutical research. While remarkable progress has been made in this field each year, the absence of dedicated open-access databases for endophytic microorganism natural products research is evident. To address the increasing demand for mining and sharing of data resources related to endophytic microorganism natural products, this study introduces EMNPD, a comprehensive endophytic microorganism natural products database comprising manually curated data. Currently, EMNPD offers 6632 natural products from 1017 endophytic microorganisms, targeting 1286 entities (including 94 proteins, 282 cell lines, and 910 species) with 91 diverse bioactivities. It encompasses the physico-chemical properties of natural products, ADMET information, quantitative activity data with their potency, natural products contents with diverse fermentation conditions, systematic taxonomy, and links to various well-established databases. EMNPD aims to function as an open-access knowledge repository for the study of endophytic microorganisms and their natural products, thereby facilitating drug discovery research and exploration of bioactive substances. The database can be accessed at http://emnpd.idrblab.cn/ without the need for registration, enabling researchers to freely download the data. EMNPD is expected to become a valuable resource in the field of endophytic microorganism natural products and contribute to future drug development endeavors.
Collapse
Affiliation(s)
- Hong-Quan Xu
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Huan Xiao
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Jin-Hui Bu
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yan-Feng Hong
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yu-Hong Liu
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Zi-Yue Tao
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Shu-Fan Ding
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yi-Tong Xia
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - E Wu
- Rehabilitation and Nursing School, Hangzhou Vocational & Technical College, Hangzhou, 310018, Zhejiang, China
| | - Zhen Yan
- The Affiliated Hospital of Hangzhou Normal University, Hangzhou, 310000, China
- First Clinical Medical Institute, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Wei Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Innovation Institute for Affiliated Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China
| | - Gong-Xing Chen
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- Innovation Institute for Affiliated Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China.
| | - Lin Tao
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
4
|
Ganeshkumar A, Gonçale JC, Rajaram R, Junqueira JC. Anti-Candidal Marine Natural Products: A Review. J Fungi (Basel) 2023; 9:800. [PMID: 37623571 PMCID: PMC10455659 DOI: 10.3390/jof9080800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
Candida spp. are common opportunistic microorganisms in the human body and can cause mucosal, cutaneous, and systemic infections, mainly in individuals with weakened immune systems. Candida albicans is the most isolated and pathogenic species; however, multi-drug-resistant yeasts like Candida auris have recently been found in many different regions of the world. The increasing development of resistance to common antifungals by Candida species limits the therapeutic options. In light of this, the present review attempts to discuss the significance of marine natural products in controlling the proliferation and metabolism of C. albicans and non-albicans species. Natural compounds produced by sponges, algae, sea cucumber, bacteria, fungi, and other marine organisms have been the subject of numerous studies since the 1980s, with the discovery of several products with different chemical frameworks that can inhibit Candida spp., including antifungal drug-resistant strains. Sponges fall under the topmost category when compared to all other organisms investigated. Terpenoids, sterols, and alkaloids from this group exhibit a wide array of inhibitory activity against different Candida species. Especially, hippolide J, a pair of enantiomeric sesterterpenoids isolated from the marine sponge Hippospongia lachne, exhibited strong activity against Candida albicans, Candida parapsilosis, and Candida glabrata. In addition, a comprehensive analysis was performed to unveil the mechanisms of action and synergistic activity of marine products with conventional antifungals. In general, the results of this review show that the majority of chemicals derived from the marine environment are able to control particular functions of microorganisms belonging to the Candida genus, which can provide insights into designing new anti-candidal therapies.
Collapse
Affiliation(s)
- Arumugam Ganeshkumar
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, Sao Paulo State University (UNESP), Sao Jose dos Campos 12245-000, Brazil;
- Department of Materials Physics, Saveetha School of Engineering, Saveetha Nagar, Thandalam, Chennai 602105, India
| | - Juliana Caparroz Gonçale
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, Sao Paulo State University (UNESP), Sao Jose dos Campos 12245-000, Brazil;
| | - Rajendran Rajaram
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620024, India;
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, Sao Paulo State University (UNESP), Sao Jose dos Campos 12245-000, Brazil;
| |
Collapse
|
5
|
Bai X, Sheng Y, Tang Z, Pan J, Wang S, Tang B, Zhou T, Shi L, Zhang H. Polyketides as Secondary Metabolites from the Genus Aspergillus. J Fungi (Basel) 2023; 9:261. [PMID: 36836375 PMCID: PMC9962652 DOI: 10.3390/jof9020261] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Polyketides are an important class of structurally diverse natural products derived from a precursor molecule consisting of a chain of alternating ketone and methylene groups. These compounds have attracted the worldwide attention of pharmaceutical researchers since they are endowed with a wide array of biological properties. As one of the most common filamentous fungi in nature, Aspergillus spp. is well known as an excellent producer of polyketide compounds with therapeutic potential. By extensive literature search and data analysis, this review comprehensively summarizes Aspergillus-derived polyketides for the first time, regarding their occurrences, chemical structures and bioactivities as well as biosynthetic logics.
Collapse
Affiliation(s)
- Xuelian Bai
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yue Sheng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhenxing Tang
- School of Culinary Arts, Tourism College of Zhejiang, Hangzhou 311231, China
| | - Jingyi Pan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Shigui Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Bin Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Ting Zhou
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Lu’e Shi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Huawei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
6
|
Marine Compounds with Anti-Candida sp. Activity: A Promised “Land” for New Antifungals. J Fungi (Basel) 2022; 8:jof8070669. [PMID: 35887426 PMCID: PMC9320905 DOI: 10.3390/jof8070669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 02/05/2023] Open
Abstract
Candida albicans is still the major yeast causing human fungal infections. Nevertheless, in the last decades, non-Candida albicans Candida species (NCACs) (e.g., Candida glabrata, Candida tropicalis, and Candida parapsilosis) have been increasingly linked to Candida sp. infections, mainly in immunocompromised and hospitalized patients. The escalade of antifungal resistance among Candida sp. demands broadly effective and cost-efficient therapeutic strategies to treat candidiasis. Marine environments have shown to be a rich source of a plethora of natural compounds with substantial antimicrobial bioactivities, even against resistant pathogens, such as Candida sp. This short review intends to briefly summarize the most recent marine compounds that have evidenced anti-Candida sp. activity. Here, we show that the number of compounds discovered in the last years with antifungal activity is growing. These drugs have a good potential to be used for the treatment of candidiasis, but disappointedly the reports have devoted a high focus on C. albicans, neglecting the NCACs, highlighting the need to perform outspreading studies in the near future.
Collapse
|
7
|
Naphtho-Gamma-Pyrones (NγPs) with Obvious Cholesterol Absorption Inhibitory Activity from the Marine-Derived Fungus Aspergillus niger S-48. Molecules 2022; 27:molecules27082514. [PMID: 35458715 PMCID: PMC9029069 DOI: 10.3390/molecules27082514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 01/24/2023] Open
Abstract
Eight naphtho-gamma-pyrones (NγPs) (1–8), together with four known biosynthetically related coumarin derivatives (9–12), were isolated from the potato dextrose agar media of a marine-derived fungus Aspergillus niger S-48. Among them, natural compounds 1 and 2 were tentatively subjected to benzohydrazide reaction to evaluate the importance of pyran rings in NγPs. Their structures were elucidated by extensive 1D and 2D NMR spectroscopic data and MS spectra. Compounds 1–4 showed obvious activity for reducing cholesterol absorption verging on ezetimibe. This work highlighted the potential of natural NγPs as NPC1L1 inhibitors.
Collapse
|
8
|
Nickles G, Ludwikoski I, Bok JW, Keller NP. Comprehensive Guide to Extracting and Expressing Fungal Secondary Metabolites with Aspergillus fumigatus as a Case Study. Curr Protoc 2021; 1:e321. [PMID: 34958718 DOI: 10.1002/cpz1.321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Fungal secondary metabolites (SMs) have captured the interest of natural products researchers in academia and industry for decades. In recent years, the high rediscovery rate of previously characterized metabolites is making it increasingly difficult to uncover novel compounds. Additionally, the vast majority of fungal SMs reside in genetically intractable fungi or are silent under normal laboratory conditions in genetically tractable fungi. The fungal natural products community has broadly overcome these barriers by altering the physical growth conditions of the fungus and heterologous/homologous expression of biosynthetic gene cluster regulators or proteins. The protocols described here summarize vital methodologies needed when researching SM production in fungi. We also summarize the growth conditions, genetic backgrounds, and extraction protocols for every published SM in Aspergillus fumigatus, enabling readers to easily replicate the production of previously characterized SMs. Readers will also be equipped with the tools for developing their own strategy for expressing and extracting SMs from their given fungus or a suitable heterologous model system. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Making glycerol stocks from spore suspensions Alternate Protocol 1: Creating glycerol stocks from non-sporulating filamentous fungi Basic Protocol 2: Activating spore-suspension glycerol stocks Basic Protocol 3: Extracting secondary metabolites from Aspergillus spp grown on solid medium Alternate Protocol 2: Extracting secondary metabolites from Aspergillus spp using ethyl acetate Alternate Protocol 3: High-volume metabolite extraction using ethyl acetate Alternate Protocol 4: Extracting secondary metabolites from Aspergillus spp in liquid medium Support Protocol: Creating an overlay culture Basic Protocol 4: Extracting DNA from filamentous fungi Basic Protocol 5: Creating a DNA construct with double-joint PCR Alternate Protocol 5: Creating a DNA construct with yeast recombineering Basic Protocol 6: Transformation of Aspergillus spp Basic Protocol 7: Co-culturing fungi and bacteria for extraction of secondary metabolites.
Collapse
Affiliation(s)
- Grant Nickles
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Isabelle Ludwikoski
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jin Woo Bok
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
9
|
Liu J, Yu R, Jia J, Gu W, Zhang H. Assignment of Absolute Configurations of Two Promising Anti- Helicobacter pylori Agents from the Marine Sponge-Derived Fungus Aspergillus niger L14. Molecules 2021; 26:molecules26165061. [PMID: 34443650 PMCID: PMC8399357 DOI: 10.3390/molecules26165061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/15/2021] [Accepted: 08/18/2021] [Indexed: 12/02/2022] Open
Abstract
A chemical investigation into endozoic fungus Aspergillus niger L14 derived from the marine sponge of Reniera japonica collected off Xinghai Bay (China) resulted in the isolation of two dimeric naphtho-γ-pyrones, fonsecinone A (1) and isoaurasperone A (2). Through a combination of ECD spectra and X-ray diffraction analysis, the chiral axes of compounds 1 and 2 were unambiguously determined as Rα-configurations. Bioassay results indicated that these substances exhibited remarkably inhibitory effects on human pathogens Helicobacter pylori G27 and 159 with MIC values of ≤4 μg/mL, which are similar to those of the positive control, ampicillin sodium. To the best of our knowledge, this is the first report on absolute configuration of 1 and crystallographic data of 2, as well as their potent anti-H. pylori activities.
Collapse
Affiliation(s)
- Jia Liu
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China; (J.L.); (R.Y.)
| | - Ronglu Yu
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China; (J.L.); (R.Y.)
| | - Jia Jia
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology, Nanjing Medical University, Nanjing 211166, China;
| | - Wen Gu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China;
| | - Huawei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China; (J.L.); (R.Y.)
- Correspondence: ; Tel.: +86-571-8832-0913
| |
Collapse
|
10
|
Yu R, Liu J, Wang Y, Wang H, Zhang H. Aspergillus niger as a Secondary Metabolite Factory. Front Chem 2021; 9:701022. [PMID: 34395379 PMCID: PMC8362661 DOI: 10.3389/fchem.2021.701022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/28/2021] [Indexed: 12/23/2022] Open
Abstract
Aspergillus niger, one of the most common and important fungal species, is ubiquitous in various environments. A. niger isolates possess a large number of cryptic biosynthetic gene clusters (BGCs) and produce various biomolecules as secondary metabolites with a broad spectrum of application fields covering agriculture, food, and pharmaceutical industry. By extensive literature search, this review with a comprehensive summary on biological and chemical aspects of A. niger strains including their sources, BGCs, and secondary metabolites as well as biological properties and biosynthetic pathways is presented. Future perspectives on the discovery of more A. niger-derived functional biomolecules are also provided in this review.
Collapse
Affiliation(s)
- Ronglu Yu
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Jia Liu
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Yi Wang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Hong Wang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Hangzhou, China
| | - Huawei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Hangzhou, China
| |
Collapse
|
11
|
Zou TG, Guo SY, Zhu JL, Wang S, Lin LY, Tao YW. The crystal structure of 5-hydroxy-6,8-dimethoxy-2-methyl-4 H-benzo[ g]chromen-4-one– rubrofusarin B, C 16H 14O 5. Z KRIST-NEW CRYST ST 2021. [DOI: 10.1515/ncrs-2020-0645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C16H14O5, monoclinic, P21/c (no. 14), a = 9.0005(11) Å, b = 16.0386(15) Å, c = 9.8434(11) Å, β = 114.861(14)°, V = 1289.3(3) Å3, Z = 4, R
gt
(F) = 0.0458, wR
ref
(F
2) = 0.1245, T = 150(1) K.
Collapse
Affiliation(s)
- Ting-Guang Zou
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease , School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University , Guangzhou , Guangdong 511436 , P. R. China
| | - Si-Yu Guo
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease , School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University , Guangzhou , Guangdong 511436 , P. R. China
| | - Jing-Lin Zhu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease , School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University , Guangzhou , Guangdong 511436 , P. R. China
| | - Sheng Wang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease , School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University , Guangzhou , Guangdong 511436 , P. R. China
| | - Ling-Yin Lin
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease , School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University , Guangzhou , Guangdong 511436 , P. R. China
| | - Yi-Wen Tao
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease , School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University , Guangzhou , Guangdong 511436 , P. R. China
| |
Collapse
|