1
|
Ji R, Zha X, Zhou S. Marine Fungi: A Prosperous Source of Novel Bioactive Natural Products. Curr Med Chem 2025; 32:992-1006. [PMID: 37885109 DOI: 10.2174/0109298673266304231015070956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/04/2023] [Accepted: 09/15/2023] [Indexed: 10/28/2023]
Abstract
As the number of viruses, bacteria, and tumors that are resistant to drugs continues to rise, there is a growing need for novel lead compounds to treat them. Marine fungi, due to their unique secondary metabolic pathways and vast biodiversity, have become a crucial source for lead compounds in drug development. This review utilizes bibliometric methods to analyze the research status of natural products from marine fungi in the past decade, revealing the hotspots and trends in this field from Web of Science database. Furthermore, this review summarizes the biological activities and effects on molecular mechanisms of novel natural compounds isolated from marine fungi in the past five years. These novel compounds belong to six different structural classes, such as alkaloids, terpenoids, anthraquinones, polyketones, etc. They also exhibited highly potent biological properties, including antiviral, antitumor, antibacterial, antiinflammatory, and other properties. This review demonstrates the hotspots and trends of marine fungi research in recent years, as well as the variety of chemical structure and biological activities of their natural products, and it may provide guidance for those interested in discovering new drugs from marine fungi and specific targeting mechanisms.
Collapse
Affiliation(s)
- Rong Ji
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Key Laboratory of Tropical Molecular Pharmacology and Advanced Diagnostic Technology, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Xiangru Zha
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Key Laboratory of Tropical Molecular Pharmacology and Advanced Diagnostic Technology, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Songlin Zhou
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Key Laboratory of Tropical Molecular Pharmacology and Advanced Diagnostic Technology, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, China
| |
Collapse
|
2
|
Labuda R, Bacher M, Rosenau T, Gratzl H, Doppler M, Hager S, Marko D, Wiesner C, Očková M, Ollinger N, Wagner M, Schüller C, Strauss J. Chemical composition of anti-microbially active fractions derived from extract of filamentous fungus Keratinophyton Lemmensii including three novel bioactive compounds. Sci Rep 2024; 14:25310. [PMID: 39455635 PMCID: PMC11511975 DOI: 10.1038/s41598-024-75510-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Screening for new bioactive microbial metabolites, we found a novel okaramine derivative, for which we propose the trivial name lemmokaramine, as well as two already known okaramine congeners - okaramine H and okaramine J - responsible for antimicrobial activity of the recently described microscopic filamentous fungus, Keratinophyton lemmensii BiMM-F76 (= CCF 6359). In addition, two novel substances, a new cyclohexyl denominated lemmensihexol and a new tetrahydroxypyrane denominated lemmensipyrane, were purified and characterized. The compounds were isolated from the culture extract of the fungus grown on modified yeast extract sucrose medium by means of flash chromatography followed by preparative HPLC. The chemical structures were elucidated by NMR and LC-MS. The new okaramine (lemmokaramine) exerted antimicrobial activity against Gram-positive and Gram-negative bacteria, yeasts and fungi and anticancer activity against different mammalian cell lines (Caco-2, HCT116, HT29, SW480, MCM G1, and MCM DLN). Furthermore, we found a significant antioxidant effect of lemmokaramine following H2O2 treatment indicated by activation of the Nrf2 pathway. This is the first report describing analysis and structural elucidation of bioactive metabolites for the onygenalean genus Keratinophyton.
Collapse
Affiliation(s)
- Roman Labuda
- Unit of Food Microbiology, Department for Farm Animals and Veterinary Public Health, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria.
- Core Facility Bioactive Molecules, Screening and Analysis and Research Platform Bioactive Microbial Metabolites (BiMM), Konrad Lorenz Strasse 24, 3430, Tulln an der Donau, Austria.
| | - Markus Bacher
- Core Facility Bioactive Molecules, Screening and Analysis and Research Platform Bioactive Microbial Metabolites (BiMM), Konrad Lorenz Strasse 24, 3430, Tulln an der Donau, Austria
- Institute of Chemistry of Renewable Resources, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Strasse 24, 3430, Tulln an der Donau, Austria
| | - Thomas Rosenau
- Institute of Chemistry of Renewable Resources, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Strasse 24, 3430, Tulln an der Donau, Austria
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Porthansgatan 3, 20500, Turku, Finland
| | - Hannes Gratzl
- Core Facility Bioactive Molecules, Screening and Analysis and Research Platform Bioactive Microbial Metabolites (BiMM), Konrad Lorenz Strasse 24, 3430, Tulln an der Donau, Austria
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Strasse 20, 3430, Tulln an der Donau, Austria
| | - Maria Doppler
- Core Facility Bioactive Molecules, Screening and Analysis and Research Platform Bioactive Microbial Metabolites (BiMM), Konrad Lorenz Strasse 24, 3430, Tulln an der Donau, Austria
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Strasse 20, 3430, Tulln an der Donau, Austria
| | - Sonja Hager
- Department for Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Waehringerstrasse 38, 1090, Vienna, Austria
| | - Doris Marko
- Department for Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Waehringerstrasse 38, 1090, Vienna, Austria
| | - Christoph Wiesner
- Department of Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences Krems AT, 3500, Krems, Austria
| | - Monika Očková
- Department of Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences Krems AT, 3500, Krems, Austria
| | - Nicole Ollinger
- FFoQSI - Austrian Competence Centre for Feed and Food Quality, Safety & Innovation, Stelzhamerstr. 23, 4600, Wels, Austria
| | - Martin Wagner
- Unit of Food Microbiology, Department for Farm Animals and Veterinary Public Health, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Christoph Schüller
- Core Facility Bioactive Molecules, Screening and Analysis and Research Platform Bioactive Microbial Metabolites (BiMM), Konrad Lorenz Strasse 24, 3430, Tulln an der Donau, Austria
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Strasse 24, 3430, Tulln an der Donau, Austria
| | - Joseph Strauss
- Core Facility Bioactive Molecules, Screening and Analysis and Research Platform Bioactive Microbial Metabolites (BiMM), Konrad Lorenz Strasse 24, 3430, Tulln an der Donau, Austria.
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Strasse 24, 3430, Tulln an der Donau, Austria.
| |
Collapse
|
3
|
Anh NM, Minh LTH, Linh NT, Dao PT, Quynh DT, Huong DTM, Van Cuong P, Huyen VTT, Dat TTH. Secondary metabolites from marine fungus Penicillium chrysogenum VH17 and their antimicrobial and cytotoxic potential. Biosci Biotechnol Biochem 2024; 88:1254-1260. [PMID: 39152047 DOI: 10.1093/bbb/zbae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
One new compound, methyl 3-((1-((2-carbamoylphenyl)amino)-1-oxopropan-2-yl)amino)-3-oxopropanoate (1), along with 9 known secondary metabolites (2-10) were isolated and elucidated chemical structures from the methanol extract of the marine-derived fungus Penicillium chrysogenum VH17. Subsequent bioassays showed the antimicrobial and cytotoxic potential of the isolated compounds. All compounds 1-10 displayed antimicrobial effects against at least one tested reference microorganism with MIC values ranging from 32 to 256 µg mL-1. Furthermore, compound 4 exhibited significant cytotoxicity against all tested cell lines, HepG2, A549, and MCF7 with IC50 values of 29.43 ± 1.37, 33.02 ± 1.53, and 36.72 ± 1.88 µM, respectively, whereas compound 3 exhibited weak cytotoxicity against MCF7 and HepG2 cell lines with IC50 values of 87.17 ± 6.31 and 97.32 ± 5.66 µM, respectively.
Collapse
Affiliation(s)
- Nguyen Mai Anh
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam
| | - Le Thi Hong Minh
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam
| | - Nguyen Thuy Linh
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Cau Giay, Hanoi, Vietnam
| | - Phi Thi Dao
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Cau Giay, Hanoi, Vietnam
| | - Do Thi Quynh
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Cau Giay, Hanoi, Vietnam
| | - Doan Thi Mai Huong
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam
| | - Pham Van Cuong
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam
| | - Vu Thi Thu Huyen
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Cau Giay, Hanoi, Vietnam
| | - Ton That Huu Dat
- Mientrung Institute for Scientifc Research, Vietnam National Museum of Nature, VAST, Hue city, Thua Thien Hue, Vietnam
| |
Collapse
|
4
|
Lu Y, Li Y, Dou M, Liu D, Lin W, Fan A. Discovery of a Hybrid Molecule with Phytotoxic Activity by Genome Mining, Heterologous Expression, and OSMAC Strategy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18520-18527. [PMID: 39105744 DOI: 10.1021/acs.jafc.4c04244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Genome mining in association with the OSMAC (one strain, many compounds) approach provides a feasible strategy to extend the chemical diversity and novelty of natural products. In this study, we identified the biosynthetic gene cluster (BGC) of restricticin, a promising antifungal agent featuring a reactive primary amine, from the fungus Aspergillus sclerotiorum LZDX-33-4 by genome mining. Combining heterologous expression and the OSMAC strategy resulted in the production of a new hybrid product (1), along with N-acetyl-restricticin (2) and restricticinol (3). The structure of 1 was determined by spectroscopic data, including optical rotation and electronic circular dichroism (ECD) calculations, for configurational assignment. Compound 1 represents a fusion of restricticin and phytotoxic cichorin. The biosynthetic pathway of 1 was proposed, in which the condensation of a primary amine of restricticin with a precursor of cichorine was postulated. Compound 1 at 5 mM concentration inhibited the growth of the shoots and roots of Lolium perenne, Festuca arundinacea, and Lactuca sativa with inhibitory rates of 71.3 and 88.7% for L. perenne, 79.4 and 73.0% for F. arundinacea, and 58.2 and 52.9% for L. sativa. In addition, compound 1 at 25 μg/mL showed moderate antifungal activity against Fusarium fujikuroi and Trichoderma harzianum with inhibition rates of 22.6 and 31.6%, respectively. These results suggest that heterologous expression in conjunction with the OSMAC approach provides a promising strategy to extend the metabolite novelty due to the incorporation of endogenous metabolites from the host strain with exogenous compounds, leading to the production of more complex compounds and the acquisition of new physiological functions.
Collapse
Affiliation(s)
- Yubo Lu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yanpeng Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Min Dou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Dong Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Institute of Ocean Research, Ningbo Institute of Marine Medicine, Peking University, Ningbo 315832, Zhejiang, China
| | - Aili Fan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
5
|
Wang WJ, Liao LX, Huang ZD, Wei FT, Yang XL. Thiazolo[5,4- b]pyridine Alkaloid and Seven ar-Bisabol Sesquiterpenes Produced by the Endophytic Fungus Penicillium janthinellum. ACS OMEGA 2022; 7:35280-35287. [PMID: 36211040 PMCID: PMC9535718 DOI: 10.1021/acsomega.2c04434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
We investigated the secondary metabolites present in Penicillium janthinellum MPT-25, an endophytic fungus isolated from Taxus wallichiana var. chinensis (Pilger) Florin. Chemical characterization of the solid cultured extract resulted in the isolation of 11 compounds, including eight previously undescribed metabolites: a thiazolo[5,4-b]pyridine alkaloid, janthinedine A (1), and seven ar-bisabol sesquiterpenes, janthinepenes A-G (2-8). Their structures were elucidated by a combination of extensive spectroscopic methods, including single-crystal X-ray diffraction and ECD spectra. The antimicrobial activities of these compounds were evaluated against seven agricultural pathogenic fungi and eight clinically drug-resistant bacteria.
Collapse
|
6
|
Abstract
Covering: 2020This review covers the literature published in 2020 for marine natural products (MNPs), with 757 citations (747 for the period January to December 2020) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1407 in 420 papers for 2020), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. A meta analysis of bioactivity data relating to new MNPs reported over the last five years is also presented.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. .,Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia.,School of Enivironment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
7
|
Nowak MG, Skwarecki AS, Milewska MJ. Amino Acid Based Antimicrobial Agents - Synthesis and Properties. ChemMedChem 2021; 16:3513-3544. [PMID: 34596961 PMCID: PMC9293202 DOI: 10.1002/cmdc.202100503] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/02/2021] [Indexed: 12/20/2022]
Abstract
Structures of several dozen of known antibacterial, antifungal or antiprotozoal agents are based on the amino acid scaffold. In most of them, the amino acid skeleton is of a crucial importance for their antimicrobial activity, since very often they are structural analogs of amino acid intermediates of different microbial biosynthetic pathways. Particularly, some aminophosphonate or aminoboronate analogs of protein amino acids are effective enzyme inhibitors, as structural mimics of tetrahedral transition state intermediates. Synthesis of amino acid antimicrobials is a particular challenge, especially in terms of the need for enantioselective methods, including the asymmetric synthesis. All these issues are addressed in this review, summing up the current state‐of‐the‐art and presenting perspectives fur further progress.
Collapse
Affiliation(s)
- Michał G Nowak
- Department of Organic Chemistry and BioTechMed Center, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233, Gdańsk, Poland
| | - Andrzej S Skwarecki
- Department of Pharmaceutical Technology and Biochemistry and BioTechMed Center, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233, Gdańsk, Poland
| | - Maria J Milewska
- Department of Organic Chemistry and BioTechMed Center, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233, Gdańsk, Poland
| |
Collapse
|
8
|
Cao VA, Choi BK, Lee HS, Heo CS, Shin HJ. Reisolation and Structure Revision of Asperspiropene A. JOURNAL OF NATURAL PRODUCTS 2021; 84:1843-1847. [PMID: 34033468 DOI: 10.1021/acs.jnatprod.1c00288] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Asperspiropene A was originally reported to have a unique 1,8-dioxaspiro[4.5]decane skeleton. During the course of our ongoing research for novel marine natural products, we isolated compound 1, which has identical 1D and 2D NMR data to asperspiropene A. Detailed and careful analysis of spectroscopic data led us to revise the structure of asperspiropene A and to determine its absolute configuration.
Collapse
Affiliation(s)
- Van Anh Cao
- Department of Marine Biotechnology, University of Science and Technology (UST), 217 Gajungro, Yuseong-gu, Daejeon 34113, Korea
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology, 385 Haeyang-ro, Yeongdo-gu, Busan 49111, Korea
| | - Byeoung-Kyu Choi
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology, 385 Haeyang-ro, Yeongdo-gu, Busan 49111, Korea
| | - Hwa-Sun Lee
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology, 385 Haeyang-ro, Yeongdo-gu, Busan 49111, Korea
| | - Chang-Su Heo
- Department of Marine Biotechnology, University of Science and Technology (UST), 217 Gajungro, Yuseong-gu, Daejeon 34113, Korea
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology, 385 Haeyang-ro, Yeongdo-gu, Busan 49111, Korea
| | - Hee Jae Shin
- Department of Marine Biotechnology, University of Science and Technology (UST), 217 Gajungro, Yuseong-gu, Daejeon 34113, Korea
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology, 385 Haeyang-ro, Yeongdo-gu, Busan 49111, Korea
| |
Collapse
|
9
|
New Polyenes from the Marine-Derived Fungus Talaromyces cyanescens with Anti-Neuroinflammatory and Cytotoxic Activities. Molecules 2021; 26:molecules26040836. [PMID: 33562648 PMCID: PMC7915668 DOI: 10.3390/molecules26040836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 11/17/2022] Open
Abstract
Three new polyene compounds, talacyanols A–C (1–3), along with two known compounds, ramulosin (4) and eurothiocin A (5), were isolated from the marine fungus Talaromyces cyanescens derived from a seaweed Caulerpa sp. Structures of 1–5 were established by one-dimensional and two-dimensional (1D/2D) NMR, HR-ESIMS, and the modified Mosher’s methods, as well as comparison with previously reported literature data. All the compounds (1–5) were tested for their in vitro cytotoxic and anti-neuroinflammatory activities. Among them, 1 showed moderate cytotoxic activity against a panel of cancer cell lines (HCT-15, NUGC-3, NCI-H23, ACHN, PC-3, and MDA-MB-231) with GI50 values ranging from 44.4 to 91.6 μM, whereas compounds 2 and 5 exhibited anti-neuroinflammatory effect without cytotoxicity against all the tested cell lines.
Collapse
|
10
|
Metabolites of Marine Sediment-Derived Fungi: Actual Trends of Biological Activity Studies. Mar Drugs 2021; 19:md19020088. [PMID: 33557071 PMCID: PMC7913796 DOI: 10.3390/md19020088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/22/2021] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
Marine sediments are characterized by intense degradation of sedimenting organic matter in the water column and near surface sediments, combined with characteristically low temperatures and elevated pressures. Fungi are less represented in the microbial communities of sediments than bacteria and archaea and their relationships are competitive. This results in wide variety of secondary metabolites produced by marine sediment-derived fungi both for environmental adaptation and for interspecies interactions. Earlier marine fungal metabolites were investigated mainly for their antibacterial and antifungal activities, but now also as anticancer and cytoprotective drug candidates. This review aims to describe low-molecular-weight secondary metabolites of marine sediment-derived fungi in the context of their biological activity and covers research articles published between January 2016 and November 2020.
Collapse
|
11
|
Choi BK, Cho DY, Choi DK, Trinh PTH, Shin HJ. Two New Phomaligols from the Marine-Derived Fungus Aspergillus flocculosus and Their Anti-Neuroinflammatory Activity in BV-2 Microglial Cells. Mar Drugs 2021; 19:65. [PMID: 33513937 PMCID: PMC7911895 DOI: 10.3390/md19020065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 02/06/2023] Open
Abstract
Two new phomaligols, deketo-phomaligol A (1) and phomaligol E (2), together with six known compounds (3-8) were isolated from the culture broth of the marine-derived fungus Aspergillus flocculosus. Compound 1 was first isolated as a phomaligol derivative possessing a five-membered ring. The structures and absolute configurations of the new phomaligols were determined by detailed analyses of mass spectrometry (MS), nuclear magnetic resonance (NMR) data, optical rotation values and electronic circular dichroism (ECD). In addition, the absolute configurations of the known compounds 3 and 4 were confirmed by chemical oxidation and comparison of optical rotation values. Isolated compounds at a concentration of 100 μM were screened for inhibition of nitric oxide (NO) production in lipopolysaccharide (LPS)-induced BV-2 microglial cells. Among the compounds, 4 showed moderate anti-neuroinflammatory effects with an IC50 value of 56.6 μM by suppressing the production of pro-inflammatory mediators in activated microglial cells without cytotoxicity.
Collapse
Affiliation(s)
- Byeoung-Kyu Choi
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology, 385 Haeyang-ro, Yeongdo-gu, Busan 49111, Korea;
| | - Duk-Yeon Cho
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea; (D.-Y.C.); (D.-K.C.)
| | - Dong-Kug Choi
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea; (D.-Y.C.); (D.-K.C.)
| | - Phan Thi Hoai Trinh
- Nhatrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong, Nha Trang 650000, Vietnam;
| | - Hee Jae Shin
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology, 385 Haeyang-ro, Yeongdo-gu, Busan 49111, Korea;
| |
Collapse
|