1
|
Argenziano M, Arduino I, Rittà M, Molinar C, Feyles E, Lembo D, Cavalli R, Donalisio M. Enhanced Anti-Herpetic Activity of Valacyclovir Loaded in Sulfobutyl-ether-β-cyclodextrin-decorated Chitosan Nanodroplets. Microorganisms 2023; 11:2460. [PMID: 37894118 PMCID: PMC10609596 DOI: 10.3390/microorganisms11102460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Valacyclovir (VACV) was developed as a prodrug of the most common anti-herpetic drug Acyclovir (ACV), aiming to enhance its bioavailability. Nevertheless, prolonged VACV oral treatment may lead to the development of important side effects. Nanotechnology-based formulations for vaginal administration represent a promising approach to increase the concentration of the drug at the site of infection, limiting systemic drug exposure and reducing systemic toxicity. In this study, VACV-loaded nanodroplet (ND) formulations, optimized for vaginal delivery, were designed. Cell-based assays were then carried out to evaluate the antiviral activity of VACV loaded in the ND system. The chitosan-shelled ND exhibited an average diameter of about 400 nm and a VACV encapsulation efficiency of approximately 91% and was characterized by a prolonged and sustained release of VACV. Moreover, a modification of chitosan shell with an anionic cyclodextrin, sulfobutyl ether β-cyclodextrin (SBEβCD), as a physical cross-linker, increased the stability and mucoadhesion capability of the nanosystem. Biological experiments showed that SBEβCD-chitosan NDs enhanced VACV antiviral activity against the herpes simplex viruses type 1 and 2, most likely due to the long-term controlled release of VACV loaded in the ND and an improved delivery of the drug in sub-cellular compartments.
Collapse
Affiliation(s)
- Monica Argenziano
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10100 Torino, Italy; (M.A.); (C.M.); (R.C.)
| | - Irene Arduino
- Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (M.R.); (E.F.); (M.D.)
| | - Massimo Rittà
- Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (M.R.); (E.F.); (M.D.)
| | - Chiara Molinar
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10100 Torino, Italy; (M.A.); (C.M.); (R.C.)
| | - Elisa Feyles
- Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (M.R.); (E.F.); (M.D.)
| | - David Lembo
- Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (M.R.); (E.F.); (M.D.)
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10100 Torino, Italy; (M.A.); (C.M.); (R.C.)
| | - Manuela Donalisio
- Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (M.R.); (E.F.); (M.D.)
| |
Collapse
|
2
|
Baroni S, Argenziano M, La Cava F, Soster M, Garello F, Lembo D, Cavalli R, Terreno E. Hard-Shelled Glycol Chitosan Nanoparticles for Dual MRI/US Detection of Drug Delivery/Release: A Proof-of-Concept Study. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2227. [PMID: 37570545 PMCID: PMC10420971 DOI: 10.3390/nano13152227] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
This paper describes a novel nanoformulation for dual MRI/US in vivo monitoring of drug delivery/release. The nanosystem was made of a perfluoropentane core coated with phospholipids stabilized by glycol chitosan crosslinked with triphosphate ions, and it was co-loaded with the prodrug prednisolone phosphate (PLP) and the structurally similar MRI agent Gd-DTPAMA-CHOL. Importantly, the in vitro release of PLP and Gd-DTPAMA-CHOL from the nanocarrier showed similar profiles, validating the potential impact of the MRI agent as an imaging reporter for the drug release. On the other hand, the nanobubbles were also detectable by US imaging both in vitro and in vivo. Therefore, the temporal evolution of both MRI and US contrast after the administration of the proposed nanosystem could report on the delivery and the release kinetics of the transported drug in a given lesion.
Collapse
Affiliation(s)
- Simona Baroni
- Molecular and Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (S.B.); (F.L.C.); (F.G.)
| | - Monica Argenziano
- Department of Drug Science and Technology, University of Torino, Via P. Giuria 9, 10125 Torino, Italy; (M.A.); (M.S.)
| | - Francesca La Cava
- Molecular and Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (S.B.); (F.L.C.); (F.G.)
| | - Marco Soster
- Department of Drug Science and Technology, University of Torino, Via P. Giuria 9, 10125 Torino, Italy; (M.A.); (M.S.)
| | - Francesca Garello
- Molecular and Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (S.B.); (F.L.C.); (F.G.)
| | - David Lembo
- Department of Clinical and Biological Sciences, University of Torino, S. Luigi Gonzaga Hospital, Regione Gonzole, 10, 10043 Orbassano, Italy;
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Torino, Via P. Giuria 9, 10125 Torino, Italy; (M.A.); (M.S.)
| | - Enzo Terreno
- Molecular and Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (S.B.); (F.L.C.); (F.G.)
| |
Collapse
|
3
|
Mandras N, Luganini A, Argenziano M, Roana J, Giribaldi G, Tullio V, Cavallo L, Prato M, Cavalli R, Cuffini AM, Allizond V, Banche G. Design, Characterization, and Biological Activities of Erythromycin-Loaded Nanodroplets to Counteract Infected Chronic Wounds Due to Streptococcus pyogenes. Int J Mol Sci 2023; 24:ijms24031865. [PMID: 36768189 PMCID: PMC9915227 DOI: 10.3390/ijms24031865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
Streptococcus pyogenes causes a wide spectrum of diseases varying from mild to life threatening, despite antibiotic treatment. Nanoparticle application could facilitate the foreign pathogen fight by increasing the antimicrobial effectiveness and reducing their adverse effects. Here, we designed and produced erythromycin-loaded chitosan nanodroplets (Ery-NDs), both oxygen-free and oxygen-loaded. All ND formulations were characterized for physico-chemical parameters, drug release kinetics, and tested for biocompatibility with human keratinocytes and for their antibacterial properties or interactions with S. pyogenes. All tested NDs possessed spherical shape, small average diameter, and positive Z potential. A prolonged Ery release kinetic from Ery-NDs was demonstrated, as well as a favorable biocompatibility on human keratinocytes. Confocal microscopy images showed ND uptake and internalization by S. pyogenes starting from 3 h of incubation up to 24 h. According to cell counts, NDs displayed long-term antimicrobial efficacy against streptococci significantly counteracting their proliferation up to 24 h, thanks to the known chitosan antimicrobial properties. Intriguingly, Ery-NDs were generally more effective (104-103 log10 CFU/mL), than free-erythromycin (105 log10 CFU/mL), in the direct killing of streptococci, probably due to Ery-NDs adsorption by bacteria and prolonged release kinetics of erythromycin inside S. pyogenes cells. Based on these findings, NDs and proper Ery-NDs appear to be the most promising and skin-friendly approaches for the topical treatment of streptococcal skin infections allowing wound healing during hypoxia.
Collapse
Affiliation(s)
- Narcisa Mandras
- Department of Public Health and Pediatric Sciences, University of Torino, 10126 Turin, Italy
| | - Anna Luganini
- Department of Life Sciences and Systems Biology, University of Torino, 10126 Turin, Italy
| | - Monica Argenziano
- Department of Drug Science and Technology, University of Torino, 10126 Turin, Italy
- Correspondence: (M.A.); (V.A.); Tel.: +39-011-670-7163 (M.A.); +39-011-670-5644 (V.A.)
| | - Janira Roana
- Department of Public Health and Pediatric Sciences, University of Torino, 10126 Turin, Italy
| | | | - Vivian Tullio
- Department of Public Health and Pediatric Sciences, University of Torino, 10126 Turin, Italy
| | - Lorenza Cavallo
- Department of Public Health and Pediatric Sciences, University of Torino, 10126 Turin, Italy
| | - Mauro Prato
- Department of Public Health and Pediatric Sciences, University of Torino, 10126 Turin, Italy
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Torino, 10126 Turin, Italy
| | - Anna Maria Cuffini
- Department of Public Health and Pediatric Sciences, University of Torino, 10126 Turin, Italy
| | - Valeria Allizond
- Department of Public Health and Pediatric Sciences, University of Torino, 10126 Turin, Italy
- Correspondence: (M.A.); (V.A.); Tel.: +39-011-670-7163 (M.A.); +39-011-670-5644 (V.A.)
| | - Giuliana Banche
- Department of Public Health and Pediatric Sciences, University of Torino, 10126 Turin, Italy
| |
Collapse
|
4
|
Mandras N, Argenziano M, Prato M, Roana J, Luganini A, Allizond V, Tullio V, Finesso N, Comini S, Bressan BE, Pecoraro F, Giribaldi G, Troia A, Cavalli R, Cuffini AM, Banche G. Antibacterial and Antifungal Efficacy of Medium and Low Weight Chitosan-Shelled Nanodroplets for the Treatment of Infected Chronic Wounds. Int J Nanomedicine 2022; 17:1725-1739. [PMID: 35444418 PMCID: PMC9015045 DOI: 10.2147/ijn.s345553] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/15/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Medium versus low weight (MW vs LW) chitosan-shelled oxygen-loaded nanodroplets (cOLNDs) and oxygen-free nanodroplets (cOFNDs) were comparatively challenged for biocompatibility on human keratinocytes, for antimicrobial activity against four common infectious agents of chronic wounds (CWs) – methicillin-resistant Staphylococcus aureus (MRSA), Streptococcus pyogenes, Candida albicans and C. glabrata – and for their physical interaction with cell walls/membranes. Methods cNDs were characterized for morphology and physico-chemical properties by microscopy and dynamic light scattering. In vitro oxygen release from cOLNDs was measured through an oximeter. ND biocompatibility and ability to promote wound healing in human normoxic/hypoxic skin cells were challenged by LDH and MTT assays using keratinocytes. ND antimicrobial activity was investigated by monitoring upon incubation with/without MW or LW cOLNDs/cOFNDs either bacteria or yeast growth over time. The mechanical interaction between NDs and microorganisms was also assessed by confocal microscopy. Results LW cNDs appeared less toxic to keratinocytes than MW cNDs. Based on cell counts, either MW or LW cOLNDs and cOFNDs displayed long-term antimicrobial efficacy against S. pyogenes, C. albicans, and C. glabrata (up to 24 h), whereas a short-term cytostatic effects against MRSA (up to 6 h) was revealed. The internalization of all ND formulations by all four microorganisms, already after 3 h of incubation, was showed, with the only exception to MW cOLNDs/cOFNDs that adhered to MRSA walls without being internalized even after 24 h. Conclusion cNDs exerted bacteriostatic and fungistatic effects, due to the presence of chitosan in the outer shell and independently of oxygen addition in the inner core. The duration of such effects strictly depends on the characteristics of each microbial species, and not on the molecular weight of chitosan in ND shells. However, LW chitosan was better tolerated by human keratinocytes than MW. For these reasons, the use of LW NDs should be recommended in future research to assess cOLND efficacy for the treatment of infected CWs.
Collapse
Affiliation(s)
- Narcisa Mandras
- Department of Public Health and Pediatric Sciences, University of Torino, Turin, 10126, Italy
| | - Monica Argenziano
- Department of Drug Science and Technology, University of Torino, Turin, 10125, Italy
| | - Mauro Prato
- Department of Public Health and Pediatric Sciences, University of Torino, Turin, 10126, Italy
| | - Janira Roana
- Department of Public Health and Pediatric Sciences, University of Torino, Turin, 10126, Italy
| | - Anna Luganini
- Department of Life Sciences and Systems Biology, University of Torino, Turin, 10123, Italy
| | - Valeria Allizond
- Department of Public Health and Pediatric Sciences, University of Torino, Turin, 10126, Italy
- Correspondence: Valeria Allizond, Department of Public Health and Pediatric Sciences, University of Torino, Via Santena 9, Turin, 10126, Italy, Tel +390116705644, Fax +390112365644, Email
| | - Vivian Tullio
- Department of Public Health and Pediatric Sciences, University of Torino, Turin, 10126, Italy
| | - Nicole Finesso
- Department of Oncology, University of Torino, Turin, 10126, Italy
| | - Sara Comini
- Department of Public Health and Pediatric Sciences, University of Torino, Turin, 10126, Italy
| | | | | | | | - Adriano Troia
- Istituto Nazionale di Ricerca Metrologica, Turin, 10135, Italy
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Torino, Turin, 10125, Italy
| | - Anna Maria Cuffini
- Department of Public Health and Pediatric Sciences, University of Torino, Turin, 10126, Italy
| | - Giuliana Banche
- Department of Public Health and Pediatric Sciences, University of Torino, Turin, 10126, Italy
| |
Collapse
|
5
|
Demina TS, Bikmulina PY, Birdibekova AV, Kuryanova AS, Frolova AA, Koteneva PI, Aksenova NA, Kosheleva NV, Khlebnikova TM, Akopova TA, Timashev PS. Modification of the Chemical Structure, Morphology, and Cytocompatibility of Chitosan Films via Low-Frequency Plasma Treatment. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s000368382202003x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Confocal Laser Scanner Evaluation of Bactericidal Effect of Chitosan Nanodroplets Loaded with Benzalkonium Chloride. J Clin Med 2022; 11:jcm11061650. [PMID: 35329976 PMCID: PMC8950515 DOI: 10.3390/jcm11061650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/26/2022] [Accepted: 03/14/2022] [Indexed: 12/18/2022] Open
Abstract
The aim was to evaluate the antibacterial efficacy and penetration depth into dentinal tubules of a solution of chitosan nanodroplets (NDs) loaded with Benzalkonium Chloride (BAK). Seventy-two human single-root teeth with fully formed apex were used. Cylindrical root dentin blocks were longitudinally sectioned and enlarged to a size of a Gates Glidden drill #4. After sterilization, root canals were infected with Enterococcus faecalis ATCC 29212 and further incubated for three weeks. Specimens were assigned to three experimental groups (n = 20), plus positive (n = 6) and negative (n = 6) controls. In the first group, irrigation was achieved with 2 mL of NDs solution loaded with BAK (NDs-BAK), in the second with 2 mL of 5% sodium hypochlorite (NaOCl) and in the last with 2 mL of 2% chlorhexidine (CHX). Specimens were rinsed and vertically fractured. Confocal laser scanning microscopy (CLSM) and viability staining were used to analyze the proportions of dead and live bacteria quantitatively. The volume ratio of red fluorescence (dead) was calculated in 3D reconstructions. Data were analyzed by one-way ANOVA and post hoc Bonferroni tests (p < 0.05). The ratio of red fluorescence over the whole green/red fluorescence resulted in a significant comparison of NDs-BAK with NaOCl (p < 0.01) and NaOCl with CHX (p < 0.01). No differences were found between NDs-BAK and CHX (p > 0.05). The mean depth of efficacy was, respectively: NDs-BAK 325.25 μm, NaOCl 273.36 μm and CHX 246.78 μm with no statistical differences between groups. The NaOCl solution showed the highest antimicrobial efficacy, but nanodroplets with BAK seemed to have the same effect as CHX with a high depth of efficacy.
Collapse
|
7
|
Argenziano M, Bessone F, Dianzani C, Cucci MA, Grattarola M, Pizzimenti S, Cavalli R. Ultrasound-Responsive Nrf2-Targeting siRNA-Loaded Nanobubbles for Enhancing the Treatment of Melanoma. Pharmaceutics 2022; 14:341. [PMID: 35214073 PMCID: PMC8878772 DOI: 10.3390/pharmaceutics14020341] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/20/2022] [Accepted: 01/27/2022] [Indexed: 02/05/2023] Open
Abstract
The siRNA-mediated inhibition of nuclear factor E2-related factor 2 (Nrf2) can be an attractive approach to overcome chemoresistance in various malignant tumors, including melanoma. This work aims at designing a new type of chitosan-shelled nanobubble for the delivery of siRNA against Nrf2 in combination with an ultrasound. A new preparation method based on a water-oil-water (W/O/W) double-emulsion was purposely developed for siRNA encapsulation in aqueous droplets within a nanobubble core. Stable, very small NB formulations were obtained, with sizes of about 100 nm and a positive surface charge. siRNA was efficiently loaded in NBs, reaching an encapsulation efficiency of about 90%. siNrf2-NBs downregulated the target gene in M14 cells, sensitizing the resistant melanoma cells to the cisplatin treatment. The combination with US favored NB cell uptake and transfection efficiency. Based on the results, nanobubbles have shown to be a promising US responsive tool for siRNA delivery, able to overcome chemoresistance in melanoma cancer cells.
Collapse
Affiliation(s)
- Monica Argenziano
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (M.A.); (F.B.); (C.D.)
| | - Federica Bessone
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (M.A.); (F.B.); (C.D.)
| | - Chiara Dianzani
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (M.A.); (F.B.); (C.D.)
| | - Marie Angèle Cucci
- Department of Clinical and Biological Science, University of Turin, 10125 Turin, Italy; (M.A.C.); (M.G.); (S.P.)
| | - Margherita Grattarola
- Department of Clinical and Biological Science, University of Turin, 10125 Turin, Italy; (M.A.C.); (M.G.); (S.P.)
| | - Stefania Pizzimenti
- Department of Clinical and Biological Science, University of Turin, 10125 Turin, Italy; (M.A.C.); (M.G.); (S.P.)
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (M.A.); (F.B.); (C.D.)
| |
Collapse
|
8
|
Antimicrobial oxygen-loaded nanobubbles as promising tools to promote wound healing in hypoxic human keratinocytes. Toxicol Rep 2022; 9:154-162. [PMID: 35145879 PMCID: PMC8818485 DOI: 10.1016/j.toxrep.2022.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/29/2021] [Accepted: 01/25/2022] [Indexed: 11/26/2022] Open
Abstract
Chitosan-shelled/perfluoropentane-filled OLNBs are innovative oxygen nanocarriers. OLNBs are biocompatible with human keratinocytes after cell internalization. OLNBs promote normoxia-like migration of hypoxic human keratinocytes. Chitosan-shelled OLNBs display antimicrobial activity against MRSA and C. albicans. Oxygen-loaded nanobubbles appear promising tools to treat infected chronic wounds.
Chronic wounds (CWs) are typically characterized by persistent hypoxia, exacerbated inflammation, and impaired skin tissue remodeling. Additionally, CWs are often worsened by microbial infections. Oxygen-loaded nanobubbles (OLNBs), displaying a peculiar structure based on oxygen-solving perfluorocarbons such as perfluoropentane in the inner core and polysaccharydes including chitosan in the outer shell, have proven effective in delivering oxygen to hypoxic tissues. Antimicrobial properties have been largely reported for chitosan. In the present work chitosan/perfluoropentane OLNBs were challenged for biocompatibility with human skin cells and ability to promote wound healing processes, as well as for their antimicrobial properties against methicillin-resistant Staphylococcus aureus (MRSA) and Candida albicans. After cellular internalization, OLNBs were not toxic to human keratinocytes (HaCaT), whereas oxygen-free NBs (OFNBs) slightly affected their viability. Hypoxia-dependent inhibition of keratinocyte migratory ability after scratch was fully reversed by OLNBs, but not OFNBs. Both OLNBs and OFNBs exerted chitosan-induced short-term bacteriostatic activity against MRSA (up to 6 h) and long-term fungistatic activity against C. albicans (up to 24 h). Short-term antibacterial activity associated with NB prolonged adhesion to MRSA cell wall (up to 24 h) while long-term antifungal activity followed NB early internalization by C. albicans (already after 3 h of incubation). Taken altogether, these data support chitosan-shelled and perfluoropentane-cored OLNB potential as innovative, promising, non-toxic, and cost-effective antimicrobial devices promoting repair processes to be used for treatment of MRSA- and C. albicans-infected CWs.
Collapse
|
9
|
Hemmingsen LM, Škalko-Basnet N, Jøraholmen MW. The Expanded Role of Chitosan in Localized Antimicrobial Therapy. Mar Drugs 2021; 19:697. [PMID: 34940696 PMCID: PMC8704789 DOI: 10.3390/md19120697] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/19/2022] Open
Abstract
Chitosan is one of the most studied natural origin polymers for biomedical applications. This review focuses on the potential of chitosan in localized antimicrobial therapy to address the challenges of current rising antimicrobial resistance. Due to its mucoadhesiveness, chitosan offers the opportunity to prolong the formulation residence time at mucosal sites; its wound healing properties open possibilities to utilize chitosan as wound dressings with multitargeted activities and more. We provide an unbiased overview of the state-of-the-art chitosan-based delivery systems categorized by the administration site, addressing the site-related challenges and evaluating the representative formulations. Specifically, we offer an in-depth analysis of the current challenges of the chitosan-based novel delivery systems for skin and vaginal infections, including its formulations optimizations and limitations. A brief overview of chitosan's potential in treating ocular, buccal and dental, and nasal infections is included. We close the review with remarks on toxicity issues and remaining challenges and perspectives.
Collapse
Affiliation(s)
- Lisa Myrseth Hemmingsen
- Drug Transport and Delivery Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway;
| | | | - May Wenche Jøraholmen
- Drug Transport and Delivery Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway;
| |
Collapse
|
10
|
El-Gharably AA, Kenawy ERS, Safaan AA, Aboamna SA, Mahmoud YAG. Synthesis, characterization, antimicrobial and anticancer evaluation of N-aryl aminochitosan. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03960-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|