1
|
Lang T, Cummins SF, Paul NA, Campbell AH. Molecular responses of seaweeds to biotic interactions: A systematic review. JOURNAL OF PHYCOLOGY 2024; 60:1036-1057. [PMID: 39298370 DOI: 10.1111/jpy.13504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/21/2024]
Abstract
Seaweed farming is the single largest aquaculture commodity with >30 million tonnes produced each year. Furthermore, the restoration of lost seaweed forests is gaining significant momentum, particularly for kelps in warming temperate areas. Whether in aquaculture settings, following restoration practices, or in the wild, all seaweeds undergo biotic interactions with a diverse range of co-occurring or cocultured organisms. To date, most research assessing such biotic interactions has focused on the response of the organism interacting with seaweeds, rather than on the seaweeds themselves. However, understanding how seaweeds respond to other organisms, particularly on a molecular scale, is crucial for optimizing outcomes of seaweed farming or restoration efforts and, potentially, also for the conservation of natural populations. In this systematic review, we assessed the molecular processes that seaweeds undergo during biotic interactions and propose priority areas for future research. Despite some insights into the response of seaweeds to biotic interactions, this review specifically highlights a lack of characterization of biomolecules involved in the response to chemical cues derived from interacting organisms (four studies in the last 20 years) and a predominant use of laboratory-based experiments conducted under controlled conditions. Additionally, this review reveals that studies targeting metabolites (70%) are more common than those examining the role of genes (22%) and proteins (8%). To effectively inform seaweed aquaculture efforts, it will be crucial to conduct larger scale experiments simulating natural environments. Also, employing a holistic approach targeting genes and proteins would be beneficial to complement the relatively well-established role of metabolites.
Collapse
Affiliation(s)
- Tomas Lang
- Seaweed Research Group, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Scott F Cummins
- Seaweed Research Group, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Nicholas A Paul
- Seaweed Research Group, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Alexandra H Campbell
- Seaweed Research Group, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- School of Health, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| |
Collapse
|
2
|
Molino S, Pilar Francino M, Ángel Rufián Henares J. Why is it important to understand the nature and chemistry of tannins to exploit their potential as nutraceuticals? Food Res Int 2023; 173:113329. [PMID: 37803691 DOI: 10.1016/j.foodres.2023.113329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 10/08/2023]
Abstract
Tannins comprise a large group of polyphenols that can differ widely in chemical composition and molecular weight. The use of tannins dates back to antiquity, but it is only in recent years that their potential use as nutraceuticals associated with the human diet is beginning to be exploited. Although the biological effects of these phytocomplexes have been studied for many years, there are still several open questions regarding their chemistry and biotransformation. The vastness of the molecules that make up the class of tannins has made their characterisation, as well as their nomenclature and classification, a daunting task. This review has been written with the aim of bringing order to the chemistry of tannins by including aspects that are sometimes still overlooked or should be updated with new research in order to understand the potential of these phytocomplexes as active ingredients or technological components for nutraceutical products. Future trends in tannin research should address many questions that are still open, such as determining the exact biosynthetic pathways of all classes of tannins, the actual biological effects determined by the interaction of tannins with other molecules, their metabolization, and the best extraction methods, but with a view to market requirements.
Collapse
Affiliation(s)
- Silvia Molino
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain; Silvateam Spa, R&D Unit, San Michele Mondovì, Italy
| | - M Pilar Francino
- Area de Genòmica i Salut, Fundació per al Foment de la Investigació Sanitària i Biomèdica de la Comunitat Valenciana (FISABIO-Salut Pública), València, Spain; CIBER en Epidemiología y Salud Pública, Madrid 28029, Spain.
| | - José Ángel Rufián Henares
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain.
| |
Collapse
|
3
|
Kwon YJ, Kwon OI, Hwang HJ, Shin HC, Yang S. Therapeutic effects of phlorotannins in the treatment of neurodegenerative disorders. Front Mol Neurosci 2023; 16:1193590. [PMID: 37305552 PMCID: PMC10249478 DOI: 10.3389/fnmol.2023.1193590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 04/27/2023] [Indexed: 06/13/2023] Open
Abstract
Phlorotannins are natural polyphenolic compounds produced by brown marine algae and are currently found in nutritional supplements. Although they are known to cross the blood-brain barrier, their neuropharmacological actions remain unclear. Here we review the potential therapeutic benefits of phlorotannins in the treatment of neurodegenerative diseases. In mouse models of Alzheimer's disease, ethanol intoxication and fear stress, the phlorotannin monomer phloroglucinol and the compounds eckol, dieckol and phlorofucofuroeckol A have been shown to improve cognitive function. In a mouse model of Parkinson's disease, phloroglucinol treatment led to improved motor performance. Additional neurological benefits associated with phlorotannin intake have been demonstrated in stroke, sleep disorders, and pain response. These effects may stem from the inhibition of disease-inducing plaque synthesis and aggregation, suppression of microglial activation, modulation of pro-inflammatory signaling, reduction of glutamate-induced excitotoxicity, and scavenging of reactive oxygen species. Clinical trials of phlorotannins have not reported significant adverse effects, suggesting these compounds to be promising bioactive agents in the treatment of neurological diseases. We therefore propose a putative biophysical mechanism of phlorotannin action in addition to future directions for phlorotannin research.
Collapse
Affiliation(s)
- Yoon Ji Kwon
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Oh Ig Kwon
- Botamedi Brain Health and Medical Care Company Limited, Central, Hong Kong SAR, China
| | - Hye Jeong Hwang
- Center for Molecular Intelligence, SUNY Korea, Incheon, Republic of Korea
| | - Hyeon-Cheol Shin
- Botamedi Brain Health and Medical Care Company Limited, Central, Hong Kong SAR, China
- Center for Molecular Intelligence, SUNY Korea, Incheon, Republic of Korea
| | - Sungchil Yang
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| |
Collapse
|
4
|
Tan LT. Impact of Marine Chemical Ecology Research on the Discovery and Development of New Pharmaceuticals. Mar Drugs 2023; 21:174. [PMID: 36976223 PMCID: PMC10055925 DOI: 10.3390/md21030174] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Diverse ecologically important metabolites, such as allelochemicals, infochemicals and volatile organic chemicals, are involved in marine organismal interactions. Chemically mediated interactions between intra- and interspecific organisms can have a significant impact on community organization, population structure and ecosystem functioning. Advances in analytical techniques, microscopy and genomics are providing insights on the chemistry and functional roles of the metabolites involved in such interactions. This review highlights the targeted translational value of several marine chemical ecology-driven research studies and their impact on the sustainable discovery of novel therapeutic agents. These chemical ecology-based approaches include activated defense, allelochemicals arising from organismal interactions, spatio-temporal variations of allelochemicals and phylogeny-based approaches. In addition, innovative analytical techniques used in the mapping of surface metabolites as well as in metabolite translocation within marine holobionts are summarized. Chemical information related to the maintenance of the marine symbioses and biosyntheses of specialized compounds can be harnessed for biomedical applications, particularly in microbial fermentation and compound production. Furthermore, the impact of climate change on the chemical ecology of marine organisms-especially on the production, functionality and perception of allelochemicals-and its implications on drug discovery efforts will be presented.
Collapse
Affiliation(s)
- Lik Tong Tan
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore
| |
Collapse
|
5
|
Abstract
Covering: January to December 2021This review covers the literature published in 2021 for marine natural products (MNPs), with 736 citations (724 for the period January to December 2021) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1425 in 416 papers for 2021), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. An analysis of the number of authors, their affiliations, domestic and international collection locations, focus of MNP studies, citation metrics and journal choices is discussed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. .,Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia.,School of Enivironment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, and School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
6
|
Phlorotannins of the Brown Algae Sargassum vulgare from the Mediterranean Sea Coast. Antioxidants (Basel) 2022; 11:antiox11061055. [PMID: 35739951 PMCID: PMC9219761 DOI: 10.3390/antiox11061055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/17/2022] Open
Abstract
Brown seaweeds are a good source of bioactive compounds, particularly of phlorotannins, which may exert a wide spectrum of pharmacological properties. In the present study, phlorotannins of S. vulgare were extracted using a 70% acetone solution and the crude extract was further purified through liquid–liquid partition, giving rise to n-hexane, ethyl acetate and aqueous residue fractions. The crude extract and the purified fractions were evaluated for potential antioxidant abilities as well as for inhibitory potential towards the digestive enzymes α-amylase and pancreatic lipase, and anti-inflammatory potential through the hindering of albumin denaturation. Overall, the ethyl acetate fraction was the richest in phlorotannins (9.4 ± 0.03 mg PGE/g) and was also the most promising regarding the tested bioactive properties. Of note, its inhibitory potential towards α-amylase was about nine times that of the commercial drug acarbose and its inhibitory activity against high temperature-induced protein denaturation was superior to that of the non-steroidal drug ketoprofen. According to UHPLC-DAD-ESI-MS/MS analysis, this fraction contained a range of phlorotannins with at least six units of phloroglucinol, including dibenzodioxine-1,3,6,8-tetraol, fuhalol, pentaphlorethol, fucopentaphlorethol and dihydroxypentafuhalol, in addition to several less common phlorotannin sulfate derivatives.
Collapse
|
7
|
Okeke ES, Nweze EJ, Chibuogwu CC, Anaduaka EG, Chukwudozie KI, Ezeorba TPC. Aquatic Phlorotannins and Human Health: Bioavailability, Toxicity, and Future Prospects. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211056144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Medicinal chemists and pharmacognosists have relied on terrestrial sources for bioactive phytochemicals to manage and treat disease conditions. However, minimal interest is given to sea life, especially macroalgae and their inherent phytochemical reserves. Phlorotannins are a special class of phytochemicals mainly predominant in brown algae of marine and estuarine habitats. Phlorotannins are formed through the polymerization of phloroglucinol residues and derivatives via the polyketide (acetate–malonate) pathway. Studies over the past decades have implicated phlorotannins with several bioactivities, including anti-herbivory, antioxidants, anti-inflammatory, anti-microbial, anti-proliferative, anti-diabetic, radio-protective, adipogenic, anti-allergic, and anti-human immunodeficiency virus (anti-HIV) properties. All these activities are reflected in their applications as nutraceuticals and cosmeceutical agents. This article reviews the chemical composition of phlorotannins, their biological roles, and their applications. Moreover, very few studies on phlorotannin bioavailability, safety, and toxicity have been thoroughly reviewed. The paper concludes by suggesting exciting research questions for further studies.
Collapse
Affiliation(s)
- Emmanuel Sunday Okeke
- Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
- School of General Studies, University of Nigeria, Nsukka, Nigeria
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, P.R. China
- Organization of African Academic Doctor, Nairobi, Kenya
| | - Ekene John Nweze
- Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
| | | | | | | | - Timothy Prince Chidike Ezeorba
- Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
- School of Biosciences, University of Birmingham, Birmingham, UK
| |
Collapse
|