1
|
Peipei L, Qinghong Z, Yin C, Pengfei H, Junjie Z. Structure and anticoagulant activity of a galactoarabinan sulfate polysaccharide and its oligosaccharide from the green algae, Codium fragile. Int J Biol Macromol 2024; 279:135255. [PMID: 39236965 DOI: 10.1016/j.ijbiomac.2024.135255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 08/15/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
A polysaccharide, CZS-0-1, was obtained from the marine green algae Codium fragile using ion-exchange and size-exclusion chromatography. Composition and characteristics analyses showed CZS-0-1 was a sulfated galactoarabinan consisting of arabinose, galactose and a small amount of glucose in a ratio of 9:2:1 with 21% sulfate content and a molecular weight of 810 kDa. Structural properties were determined using desulfation and methylation analyses combined with instrument analysis. The results showed that the backbone of CZS-0-1 was (1 → 3)-β-L-Arap. Its O-4 and/or O-2 positions showed sulfate modification; additionally, it had 10% of (1 → 3)-β-D-Galp branches at the O-4 position of the (1 → 3)-β-L-Arap. The galactose side chains also had sulfate modification at the O-4 or O-6 position. The structure of CZS-0-1 was further confirmed by Top-down analysis of the oligosaccharides after oxidated hydrolysis by mass spectrometry. CZS-0-1 exhibited significant heparin-like anticoagulant activity. It exerted anticoagulant effects by inhibiting FIIa and FXa activities with the presence of heparin cofactors. The anticoagulant activity of CSZ-0-1 was closely related to the molecular weight, and the reduction of molecular weight may lead to a significant decrease in the anticoagulant activity. This study demonstrated that the green algae, Codium fragile can be considered as a useful resource for bioactive polysaccharides.
Collapse
Affiliation(s)
- Li Peipei
- Zhejiang Marine Fisheries Research Institute, 28 Tiyu Road, Zhoushan 316021, Zhejiang, China.
| | - Zhang Qinghong
- Zhejiang Marine Ecology and Environment Monitoring Center, Tiyu Road 20, Zhoushan 316021, Zhejiang, China
| | - Chen Yin
- College of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, 316000 Zhoushan, Zhejiang, China.
| | - He Pengfei
- Zhejiang Marine Fisheries Research Institute, 28 Tiyu Road, Zhoushan 316021, Zhejiang, China
| | - Zeng Junjie
- Zhejiang Marine Fisheries Research Institute, 28 Tiyu Road, Zhoushan 316021, Zhejiang, China
| |
Collapse
|
2
|
Zhang T, Lin L, Ren L, Sun H, Wang W, Liu S, Li S, Xiao C, Gao N, Zhao J. Structure and pharmacokinetics/pharmacodynamics of the anticoagulant tetradecasaccharide oHG-14 as an intrinsic tenase inhibitor. Thromb Res 2024; 240:109041. [PMID: 38824798 DOI: 10.1016/j.thromres.2024.109041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/12/2024] [Accepted: 05/22/2024] [Indexed: 06/04/2024]
Abstract
The intrinsic tenase complex (iXase) is an attractive antithrombotic target to treat or prevent pathological thrombosis with negligible bleeding risk. Fucosylated glycosaminoglycan (FG) is a promising anticoagulant by inhibiting iXase. A depolymerized FG (dHG-5) as an anticoagulant has been approved for clinical trials. Given that dHG-5 is a multi-component drug candidate consisting of a homologous series of oligosaccharides, it is difficult to predict a clear pharmacokinetics. Here, as a major oligosaccharide component, the tetradecasaccharide (oHG-14) was purified from dHG-5 and its structure was defined as L-Fuc3S4S-α(1,3)-L-Δ4,5GlcA-α(1,3)-{D-GalNAc4S6S-β(1,4)-[L-Fuc3S4S-α(1,]3)-D-GlcA-β(1,3)-}3-D-GalNAc4S6S-β(1,4)-[L-Fuc3S4S-α(1,]3)-D-GlcA-ol. oHG-14 showed potent iXase inhibitory activity in vitro and antithrombotic effect in vivo comparable to dHG-5. After single subcutaneous administration of oHG-14 at 8, 14.4 and 32.4 mg/kg to rats, the absolute bioavailability was 71.6 %-80.9 % determined by the validated bioanalytical methods. The maximum concentration (Cmax) was 3.73, 8.07, and 11.95 μg/mL, respectively, and the time reaching Cmax (Tmax) was about 1 h. oHG-14 was mainly excreted by kidney as the parent compound with the elimination kinetics of first-order linear model. Anticoagulant activity of oHG-14 was positively correlated with its concentration in rat plasma. The pharmacokinetics/pharmacodynamics (PK/PD) of oHG-14 is similar to that of dHG-5. This study could provide supportive data for the clinical trial of dHG-5 and further development of pure oligosaccharide as an antithrombotic drug candidate.
Collapse
Affiliation(s)
- Taocui Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; School of Medicine, Sun Yat-Sen University, Shenzhen 518107, China
| | - Lisha Lin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Lin Ren
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Huifang Sun
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Weili Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Shuang Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Shanni Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Chuang Xiao
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Na Gao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China.
| | - Jinhua Zhao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| |
Collapse
|
3
|
Zheng S, Wang Y, Wu J, Wang S, Wei H, Zhang Y, Zhou J, Shi Y. Critical Quality Control Methods for a Novel Anticoagulant Candidate LFG-Na by HPSEC-MALLS-RID and Bioactivity Assays. Molecules 2022; 27:molecules27144522. [PMID: 35889395 PMCID: PMC9318522 DOI: 10.3390/molecules27144522] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022] Open
Abstract
A low molecular weight fucosylated glycosaminoglycan sodium (LFG-Na) is a novel anticoagulant candidate from the sea cucumber Holothuria fuscopunctata that selectively inhibits intrinsic tenase (iXase). The molecular weight, molecular weight distribution and bioactivities are the critical quality attributes of LFG-Na. The determination of these quality attributes of such an oligosaccharides mixture drug is challenging but critical for the quality control process to ensure its safety and efficacy in clinical use. Herein, the molecular weight and molecular weight distribution of LFG-Na were successfully determined using high performance size exclusion chromatography coupled with multi angle laser light scattering and refractive index detector (HPSEC-MALLS-RID). Comparing to the conventional method, HPSEC-MALLS-RID based on the refractive index increment (dn/dc) did not require the reference substances to establish the calibration curve. The acceptance criteria of LFG-Na were established, the weight-average molecular weight (Mw) should be 4000 to 6000 Da, the polydispersity (Mw/Mn) < 1.40, and the fraction with molecular weights of 1500 to 8000 Da should be no less than 80% of the total. HPSEC-MALLS-RID was also utilized for the determination of the starting material native fucosylated glycosaminoglycan (NFG) to choose a better manufacturing process. Furthermore, APTT assay was selected and the potency of anti-iXase, referring to the parallel line assay (PLA) method, was established to clarify the consistency of its biological activities. The results suggest that HPSEC-MALLS-RID and bioactivity assays are critical quality control methods for multi-component glycosaminoglycan LFG-Na. The methods also provide a feasible strategy to control the quality of other polysaccharide medicines.
Collapse
Affiliation(s)
- Shunliang Zheng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (S.Z.); (J.W.)
- Mudanjiang Youbo Pharmceutical Co., Ltd., Mudanjiang 157013, China; (Y.W.); (S.W.); (H.W.); (Y.Z.)
| | - Yi Wang
- Mudanjiang Youbo Pharmceutical Co., Ltd., Mudanjiang 157013, China; (Y.W.); (S.W.); (H.W.); (Y.Z.)
| | - Jiashuo Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (S.Z.); (J.W.)
| | - Siyao Wang
- Mudanjiang Youbo Pharmceutical Co., Ltd., Mudanjiang 157013, China; (Y.W.); (S.W.); (H.W.); (Y.Z.)
| | - Huaifu Wei
- Mudanjiang Youbo Pharmceutical Co., Ltd., Mudanjiang 157013, China; (Y.W.); (S.W.); (H.W.); (Y.Z.)
| | - Yongchun Zhang
- Mudanjiang Youbo Pharmceutical Co., Ltd., Mudanjiang 157013, China; (Y.W.); (S.W.); (H.W.); (Y.Z.)
| | - Jianbo Zhou
- Mudanjiang Youbo Pharmceutical Co., Ltd., Mudanjiang 157013, China; (Y.W.); (S.W.); (H.W.); (Y.Z.)
- Correspondence: (J.Z.); (Y.S.); Tel.: +86-10-57833270 (Y.S.)
| | - Yue Shi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (S.Z.); (J.W.)
- Correspondence: (J.Z.); (Y.S.); Tel.: +86-10-57833270 (Y.S.)
| |
Collapse
|
4
|
Lin L, Li S, Gao N, Wang W, Zhang T, Yang L, Yang X, Luo D, Ji X, Zhao J. The Toxicology of Native Fucosylated Glycosaminoglycans and the Safety of Their Depolymerized Products as Anticoagulants. Mar Drugs 2021; 19:487. [PMID: 34564149 PMCID: PMC8467514 DOI: 10.3390/md19090487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/18/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022] Open
Abstract
Fucosylated glycosaminoglycan (FG) from sea cucumber is a potent anticoagulant by inhibiting intrinsic coagulation tenase (iXase). However, high-molecular-weight FGs can activate platelets and plasma contact system, and induce hypotension in rats, which limits its application. Herein, we found that FG from T. ananas (TaFG) and FG from H. fuscopunctata (HfFG) at 4.0 mg/kg (i.v.) could cause significant cardiovascular and respiratory dysfunction in rats, even lethality, while their depolymerized products had no obvious side effects. After injection, native FG increased rat plasma kallikrein activity and levels of the vasoactive peptide bradykinin (BK), consistent with their contact activation activity, which was assumed to be the cause of hypotension in rats. However, the hemodynamic effects of native FG cannot be prevented by the BK receptor antagonist. Further study showed that native FG induced in vivo procoagulation, thrombocytopenia, and pulmonary embolism. Additionally, its lethal effect could be prevented by anticoagulant combined with antiplatelet drugs. In summary, the acute toxicity of native FG is mainly ascribed to pulmonary microvessel embolism due to platelet aggregation and contact activation-mediated coagulation, while depolymerized FG is a safe anticoagulant candidate by selectively targeting iXase.
Collapse
Affiliation(s)
- Lisha Lin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (L.L.); (S.L.); (W.W.); (T.Z.); (L.Y.); (X.Y.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sujuan Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (L.L.); (S.L.); (W.W.); (T.Z.); (L.Y.); (X.Y.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Gao
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China;
| | - Weili Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (L.L.); (S.L.); (W.W.); (T.Z.); (L.Y.); (X.Y.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Taocui Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (L.L.); (S.L.); (W.W.); (T.Z.); (L.Y.); (X.Y.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lian Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (L.L.); (S.L.); (W.W.); (T.Z.); (L.Y.); (X.Y.)
| | - Xingzhi Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (L.L.); (S.L.); (W.W.); (T.Z.); (L.Y.); (X.Y.)
| | - Dan Luo
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650201, China;
| | - Xu Ji
- School of Chemical Science and Technology, Yunnan University, Kunming 650201, China
| | - Jinhua Zhao
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China;
| |
Collapse
|