1
|
Bharathi D, Lee J. Recent Advances in Marine-Derived Compounds as Potent Antibacterial and Antifungal Agents: A Comprehensive Review. Mar Drugs 2024; 22:348. [PMID: 39195465 DOI: 10.3390/md22080348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
The increase in antimicrobial resistance (AMR) in microorganisms is a significant global health concern. Various factors contribute to AMR, including alterations in cell membrane permeability, increased efflux pump activity, enzymatic modification or inactivation of antibiotics, target site changes, alternative metabolic pathways, and biofilm formation. Marine environments, with their extensive biodiversity, provide a valuable source of natural products with a wide range of biological activities. Marine-derived antimicrobial compounds show significant potential against drug-resistant bacteria and fungi. This review discusses the current knowledge on marine natural products such as microorganisms, sponges, tunicates and mollusks with antibacterial and antifungal properties effective against drug-resistant microorganisms and their ecological roles. These natural products are classified based on their chemical structures, such as alkaloids, amino acids, peptides, polyketides, naphthoquinones, terpenoids, and polysaccharides. Although still in preclinical studies, these agents demonstrate promising in vivo efficacy, suggesting that marine sources could be pivotal in developing new drugs to combat AMR, thereby fulfilling an essential medical need. This review highlights the ongoing importance of marine biodiversity exploration for discovering potential antimicrobial agents.
Collapse
Affiliation(s)
- Devaraj Bharathi
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
2
|
Caudal F, Roullier C, Rodrigues S, Dufour A, Artigaud S, Le Blay G, Bazire A, Petek S. Anti-Biofilm Extracts and Molecules from the Marine Environment. Mar Drugs 2024; 22:313. [PMID: 39057422 PMCID: PMC11278325 DOI: 10.3390/md22070313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/02/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Pathogenic bacteria and their biofilms are involved in many diseases and represent a major public health problem, including the development of antibiotic resistance. These biofilms are known to cause chronic infections for which conventional antibiotic treatments are often ineffective. The search for new molecules and innovative solutions to combat these pathogens and their biofilms has therefore become an urgent need. The use of molecules with anti-biofilm activity would be a potential solution to these problems. The marine world is rich in micro- and macro-organisms capable of producing secondary metabolites with original skeletons. An interest in the chemical strategies used by some of these organisms to regulate and/or protect themselves against pathogenic bacteria and their biofilms could lead to the development of bioinspired, eco-responsible solutions. Through this original review, we listed and sorted the various molecules and extracts from marine organisms that have been described in the literature as having strictly anti-biofilm activity, without bactericidal activity.
Collapse
Affiliation(s)
- Flore Caudal
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, EMR CNRS 6076, IUEM, 56100 Lorient, France; (F.C.); (S.R.); (A.D.)
- IRD, Univ Brest, CNRS, Ifremer, LEMAR, IUEM, 29280 Plouzane, France; (S.A.); (G.L.B.)
| | - Catherine Roullier
- Institut des Substances et Organismes de la Mer, Nantes Université, ISOMER, UR 2160, 40000 Nantes, France;
| | - Sophie Rodrigues
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, EMR CNRS 6076, IUEM, 56100 Lorient, France; (F.C.); (S.R.); (A.D.)
| | - Alain Dufour
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, EMR CNRS 6076, IUEM, 56100 Lorient, France; (F.C.); (S.R.); (A.D.)
| | - Sébastien Artigaud
- IRD, Univ Brest, CNRS, Ifremer, LEMAR, IUEM, 29280 Plouzane, France; (S.A.); (G.L.B.)
| | - Gwenaelle Le Blay
- IRD, Univ Brest, CNRS, Ifremer, LEMAR, IUEM, 29280 Plouzane, France; (S.A.); (G.L.B.)
| | - Alexis Bazire
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, EMR CNRS 6076, IUEM, 56100 Lorient, France; (F.C.); (S.R.); (A.D.)
| | - Sylvain Petek
- IRD, Univ Brest, CNRS, Ifremer, LEMAR, IUEM, 29280 Plouzane, France; (S.A.); (G.L.B.)
| |
Collapse
|
3
|
Mayer AMS, Mayer VA, Swanson-Mungerson M, Pierce ML, Rodríguez AD, Nakamura F, Taglialatela-Scafati O. Marine Pharmacology in 2019-2021: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis and Antiviral Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action. Mar Drugs 2024; 22:309. [PMID: 39057418 PMCID: PMC11278370 DOI: 10.3390/md22070309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/22/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
The current 2019-2021 marine pharmacology literature review provides a continuation of previous reviews covering the period 1998 to 2018. Preclinical marine pharmacology research during 2019-2021 was published by researchers in 42 countries and contributed novel mechanism-of-action pharmacology for 171 structurally characterized marine compounds. The peer-reviewed marine natural product pharmacology literature reported antibacterial, antifungal, antiprotozoal, antituberculosis, and antiviral mechanism-of-action studies for 49 compounds, 87 compounds with antidiabetic and anti-inflammatory activities that also affected the immune and nervous system, while another group of 51 compounds demonstrated novel miscellaneous mechanisms of action, which upon further investigation, may contribute to several pharmacological classes. Thus, in 2019-2021, a very active preclinical marine natural product pharmacology pipeline provided novel mechanisms of action as well as new lead chemistry for the clinical marine pharmaceutical pipeline targeting the therapy of several disease categories.
Collapse
Affiliation(s)
- Alejandro M. S. Mayer
- Department of Pharmacology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Veronica A. Mayer
- Department of Nursing Education, School of Nursing, Aurora University, 347 S. Gladstone Ave., Aurora, IL 60506, USA;
| | - Michelle Swanson-Mungerson
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Marsha L. Pierce
- Department of Pharmacology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Abimael D. Rodríguez
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce de León Avenue, San Juan, PR 00926, USA;
| | - Fumiaki Nakamura
- Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku 169-8555, Tokyo, Japan;
| | | |
Collapse
|
4
|
Villanueva X, Zhen L, Ares JN, Vackier T, Lange H, Crestini C, Steenackers HP. Effect of chemical modifications of tannins on their antimicrobial and antibiofilm effect against Gram-negative and Gram-positive bacteria. Front Microbiol 2023; 13:987164. [PMID: 36687646 PMCID: PMC9853077 DOI: 10.3389/fmicb.2022.987164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/18/2022] [Indexed: 01/08/2023] Open
Abstract
Background Tannins have demonstrated antibacterial and antibiofilm activity, but there are still unknown aspects on how the chemical properties of tannins affect their biological properties. We are interested in understanding how to modulate the antibiofilm activity of tannins and in delineating the relationship between chemical determinants and antibiofilm activity. Materials and methods The effect of five different naturally acquired tannins and their chemical derivatives on biofilm formation and planktonic growth of Salmonella Typhimurium, Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus was determined in the Calgary biofilm device. Results Most of the unmodified tannins exhibited specific antibiofilm activity against the assayed bacteria. The chemical modifications were found to alter the antibiofilm activity level and spectrum of the tannins. A positive charge introduced by derivatization with higher amounts of ammonium groups shifted the anti-biofilm spectrum toward Gram-negative bacteria, and derivatization with lower amounts of ammonium groups and acidifying derivatization shifted the spectrum toward Gram-positive bacteria. Furthermore, the quantity of phenolic OH-groups per molecule was found to have a weak impact on the anti-biofilm activity of the tannins. Conclusion We were able to modulate the antibiofilm activity of several tannins by specific chemical modifications, providing a first approach for fine tuning of their activity and antibacterial spectrum.
Collapse
Affiliation(s)
- Xabier Villanueva
- Faculty of Bioscience Engineering, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Heverlee, Belgium
| | - Lili Zhen
- Department of Chemical Science and Technologies, University of Rome ‘Tor Vergata’, Rome, Italy,CSGI – Center for Colloid and Surface Science, Sesto Fiorentino, Italy
| | - José Nunez Ares
- Division of Mechatronics, Biostatistics and Sensors (MeBioS), Department of Biosystems (BIOSYST), KU Leuven, Heverlee, Belgium
| | - Thijs Vackier
- Faculty of Bioscience Engineering, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Heverlee, Belgium
| | - Heiko Lange
- CSGI – Center for Colloid and Surface Science, Sesto Fiorentino, Italy,Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Claudia Crestini
- CSGI – Center for Colloid and Surface Science, Sesto Fiorentino, Italy,Department of Molecular Science and Nanosystems, Ca’ Foscari University of Venice, Venice, Italy
| | - Hans P. Steenackers
- Faculty of Bioscience Engineering, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Heverlee, Belgium,*Correspondence: Hans P. Steenackers,
| |
Collapse
|
5
|
Deng Y, Liu Y, Li J, Wang X, He S, Yan X, Shi Y, Zhang W, Ding L. Marine natural products and their synthetic analogs as promising antibiofilm agents for antibiotics discovery and development. Eur J Med Chem 2022; 239:114513. [DOI: 10.1016/j.ejmech.2022.114513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 12/25/2022]
|
6
|
Ahmed B, Jailani A, Lee JH, Lee J. Effect of halogenated indoles on biofilm formation, virulence, and root surface colonization by Agrobacterium tumefaciens. CHEMOSPHERE 2022; 293:133603. [PMID: 35032513 DOI: 10.1016/j.chemosphere.2022.133603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/27/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Agrobacterium tumefaciens is a plant pathogen that causes crown gall disease in several plant species by transferring its T-DNA to the host genome. Its chemotactic response to a range of chemical compounds released by hosts facilitates its colonization to host surfaces, and thus, novel anti-agrobacterium compounds are needed to prevent its biofilm formation. Here, we investigated 83 indole derivatives against A. tumefaciens, and based on the screening, 4-chloroindole, 6-iodoindole, and 5-chloro-2-methyl indole were selected as candidates that at 50 μg mL-1 significantly inhibited the adherence and biofilm formation of A. tumefaciens to abiotic (nitrocellulose and polystyrene) and biotic (roots of Brassica juncea) surfaces. Furthermore, they reduced bacterial growth in a time and concentration-dependent manner and significantly reduced log CFU mL-1 and survival (%). Changes in biofilm morphologies and biomasses, thicknesses, and substratum coverages were determined, and 2-D and 3-D analyses were performed using a crystal violet assay and bright field, CLSM, and SEM microscopies. Virulence factors such as swimming motility, exopolysaccharide, and exo-protease production, and cell surface hydrophobicity were markedly inhibited by the three compounds. Transcriptional analysis showed multi-fold downregulation of biofilm, virulence, motility, and stress-related genes; however, the degrees of these downregulations were variably affected. B. juncea seed germination was only severely affected by 4-chloroindole. This study demonstrates the promising antibiofilm and antivirulence activities of the three indole derivatives tested and their potentials for targeting and curbing A. tumefaciens infections.
Collapse
Affiliation(s)
- Bilal Ahmed
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea
| | - Afreen Jailani
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea
| | - Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea.
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
7
|
Faleye OS, Sathiyamoorthi E, Lee JH, Lee J. Inhibitory Effects of Cinnamaldehyde Derivatives on Biofilm Formation and Virulence Factors in Vibrio Species. Pharmaceutics 2021; 13:pharmaceutics13122176. [PMID: 34959457 PMCID: PMC8708114 DOI: 10.3390/pharmaceutics13122176] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 12/28/2022] Open
Abstract
Vibrio parahaemolyticus is considered one of the most relevant pathogenic marine bacteria with a range of virulence factors to establish food-related gastrointestinal infections in humans. Cinnamaldehyde (CNMA) and some of its derivatives have antimicrobial and antivirulence activities against several bacterial pathogens. This study examined the inhibitory effects of CNMA and its derivatives on biofilm formation and the virulence factors in Vibrio species, particularly V. parahaemolyticus. CNMA and ten of its derivatives were initially screened against V. parahaemolyticus biofilm formation, and their effects on the production of virulence factors and gene expression were studied. Among the CNMA derivatives tested, 4-nitrocinnamaldehyde, 4-chlorocinnamaldehyde, and 4-bromocinnamaldehyde displayed antibacterial and antivirulence activities, while the backbone CNMA had weak effects. The derivatives could prevent the adhesion of V. parahaemolyticus to surfaces by the dose-dependent inhibition of cell surface hydrophobicity, fimbriae production, and flagella-mediated swimming and swarming phenotypes. They also decreased the protease secretion required for virulence and indole production, which could act as an important signal molecule. The expression of QS and biofilm-related genes (aphA, cpsA, luxS, and opaR), virulence genes (fliA, tdh, and vopS), and membrane integrity genes (fadL, and nusA) were downregulated in V. parahaemolyticus by these three CNMA analogs. Interestingly, they eliminated V. parahaemolyticus and reduced the background flora from the squid surface. In addition, they exhibited similar antimicrobial and antibiofilm activities against Vibrio harveyi. This study identified CNMA derivatives as potential broad-spectrum antimicrobial agents to treat biofilm-mediated Vibrio infections and for surface disinfection in food processing facilities.
Collapse
Affiliation(s)
| | | | - Jin-Hyung Lee
- Correspondence: (J.-H.L.); (J.L.); Tel.: +82-53-810-3812 (J.-H.L.); +82-53-810-2533 (J.L.); Fax: +82-53-810-4631 (J.-H.L. & J.L.)
| | - Jintae Lee
- Correspondence: (J.-H.L.); (J.L.); Tel.: +82-53-810-3812 (J.-H.L.); +82-53-810-2533 (J.L.); Fax: +82-53-810-4631 (J.-H.L. & J.L.)
| |
Collapse
|