1
|
Rodríguez M, Cuervo L, Prado‐Alonso L, González‐Moreno MS, Olano C, Méndez C. The role of Streptomyces to achieve the United Nations sustainable development goals. Burning questions in searching for new compounds. Microb Biotechnol 2024; 17:e14541. [PMID: 39096299 PMCID: PMC11297445 DOI: 10.1111/1751-7915.14541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/08/2024] [Indexed: 08/05/2024] Open
Affiliation(s)
- Miriam Rodríguez
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A)Universidad de OviedoOviedoSpain
- Instituto de Investigación Sanitaria de Asturias (ISPA)OviedoSpain
| | - Lorena Cuervo
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A)Universidad de OviedoOviedoSpain
- Instituto de Investigación Sanitaria de Asturias (ISPA)OviedoSpain
| | - Laura Prado‐Alonso
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A)Universidad de OviedoOviedoSpain
- Instituto de Investigación Sanitaria de Asturias (ISPA)OviedoSpain
| | - María Soledad González‐Moreno
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A)Universidad de OviedoOviedoSpain
- Instituto de Investigación Sanitaria de Asturias (ISPA)OviedoSpain
| | - Carlos Olano
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A)Universidad de OviedoOviedoSpain
- Instituto de Investigación Sanitaria de Asturias (ISPA)OviedoSpain
| | - Carmen Méndez
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A)Universidad de OviedoOviedoSpain
- Instituto de Investigación Sanitaria de Asturias (ISPA)OviedoSpain
| |
Collapse
|
2
|
Teklemichael AA, Teshima A, Hirata A, Akimoto M, Taniguchi M, Khodakaramian G, Fujimura T, Tokumasu F, Arakawa K, Mizukami S. Discovery of antimalarial drugs from secondary metabolites in actinomycetes culture library. Trop Med Health 2024; 52:47. [PMID: 38982547 PMCID: PMC11232162 DOI: 10.1186/s41182-024-00608-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/29/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Natural products play a key role as potential sources of biologically active substances for the discovery of new drugs. This study aimed to identify secondary metabolites from actinomycete library extracts that are potent against the asexual stages of Plasmodium falciparum (P. falciparum). METHODS Secondary metabolites from actinomycete library extracts were isolated from culture supernatants by ethyl acetate extraction. Comprehensive screening was performed to identify novel antimalarial compounds from the actinomycete library extracts (n = 28). The antimalarial activity was initially evaluated in vitro against chloroquine/mefloquine-sensitive (3D7) and-resistant (Dd2) lines of P. falciparum. The cytotoxicity was then evaluated in primary adult mouse brain (AMB) cells. RESULTS Out of the 28 actinomycete extracts, 17 showed parasite growth inhibition > 50% at a concentration of 50 µg/mL, nine were identified with an IC50 value < 10 µg/mL, and seven suppressed the parasite significantly with an IC50 value < 5 µg/mL. The extracts from Streptomyces aureus strains HUT6003 (Extract ID number: 2), S. antibioticus HUT6035 (8), and Streptomyces sp. strains GK3 (26) and GK7 (27), were found to have the most potent antimalarial activity with IC50 values of 0.39, 0.09, 0.97, and 0.36 µg/mL (against 3D7), and 0.26, 0.22, 0.72, and 0.21 µg/mL (against Dd2), respectively. Among them, Streptomyces antibioticus strain HUT6035 (8) showed the highest antimalarial activity with an IC50 value of 0.09 µg/mL against 3D7 and 0.22 µg/mL against Dd2, and a selective index (SI) of 188 and 73.7, respectively. CONCLUSION Secondary metabolites obtained from the actinomycete extracts showed promising antimalarial activity in vitro against 3D7 and Dd2 cell lines of P. falciparum with minimal toxicity. Therefore, secondary metabolites obtained from actinomycete extracts represent an excellent starting point for the development of antimalarial drug leads.
Collapse
Affiliation(s)
- Awet Alem Teklemichael
- Department of Immune Regulation, SHIONOGI Global Infectious Diseases Division, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Nagasaki, Japan
| | - Aiko Teshima
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Asahi Hirata
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Momoko Akimoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Mayumi Taniguchi
- Department of Immune Regulation, SHIONOGI Global Infectious Diseases Division, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Nagasaki, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Nagasaki, Japan
| | - Gholam Khodakaramian
- Department of Plant Protection, College of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - Takashi Fujimura
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Fuyuki Tokumasu
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Nagasaki, Japan
- Department of Cellular Architecture Studies, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Nagasaki, Japan
- Department of Laboratory Sciences, Graduate School of Health Sciences, Gunma University, Maebashi, Gunma, Japan
| | - Kenji Arakawa
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan.
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan.
| | - Shusaku Mizukami
- Department of Immune Regulation, SHIONOGI Global Infectious Diseases Division, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Nagasaki, Japan.
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Nagasaki, Japan.
| |
Collapse
|
3
|
Chen L, Liu K, Hong J, Cui Z, He W, Wang Y, Deng Z, Tao M. The Discovery of Weddellamycin, a Tricyclic Polyene Macrolactam Antibiotic from an Antarctic Deep-Sea-Derived Streptomyces sp. DSS69, by Heterologous Expression. Mar Drugs 2024; 22:189. [PMID: 38667806 PMCID: PMC11051340 DOI: 10.3390/md22040189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/11/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Polyene macrolactams are a special group of natural products with great diversity, unique structural features, and a wide range of biological activities. Herein, a cryptic gene cluster for the biosynthesis of putative macrolactams was disclosed from a sponge-associated bacterium, Streptomyces sp. DSS69, by genome mining. Cloning and heterologous expression of the whole biosynthetic gene cluster led to the discovery of weddellamycin, a polyene macrolactam bearing a 23/5/6 ring skeleton. A negative regulator, WdlO, and two positive regulators, WdlA and WdlB, involved in the regulation of weddellamycin production were unraveled. The fermentation titer of weddellamycin was significantly improved by overexpression of wdlA and wdlB and deletion of wdlO. Notably, weddellamycin showed remarkable antibacterial activity against various Gram-positive bacteria including MRSA, with MIC values of 0.10-0.83 μg/mL, and antifungal activity against Candida albicans, with an MIC value of 3.33 μg/mL. Weddellamycin also displayed cytotoxicity against several cancer cell lines, with IC50 values ranging from 2.07 to 11.50 µM.
Collapse
Affiliation(s)
- Lu Chen
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.C.); (K.L.); (J.H.); (Z.C.); (W.H.); (Y.W.); (Z.D.)
| | - Kai Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.C.); (K.L.); (J.H.); (Z.C.); (W.H.); (Y.W.); (Z.D.)
| | - Jiali Hong
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.C.); (K.L.); (J.H.); (Z.C.); (W.H.); (Y.W.); (Z.D.)
| | - Zhanzhao Cui
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.C.); (K.L.); (J.H.); (Z.C.); (W.H.); (Y.W.); (Z.D.)
| | - Weijun He
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.C.); (K.L.); (J.H.); (Z.C.); (W.H.); (Y.W.); (Z.D.)
| | - Yemin Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.C.); (K.L.); (J.H.); (Z.C.); (W.H.); (Y.W.); (Z.D.)
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.C.); (K.L.); (J.H.); (Z.C.); (W.H.); (Y.W.); (Z.D.)
- Haihe Laboratory of Synthetic Biology, Tianjin 300308, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Meifeng Tao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.C.); (K.L.); (J.H.); (Z.C.); (W.H.); (Y.W.); (Z.D.)
- Haihe Laboratory of Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
4
|
Saito S, Arai MA. Methodology for awakening the potential secondary metabolic capacity in actinomycetes. Beilstein J Org Chem 2024; 20:753-766. [PMID: 38633912 PMCID: PMC11022428 DOI: 10.3762/bjoc.20.69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/27/2024] [Indexed: 04/19/2024] Open
Abstract
Secondary metabolites produced by actinomycete strains undoubtedly have great potential for use in applied research areas such as drug discovery. However, it is becoming difficult to obtain novel compounds because of repeated isolation around the world. Therefore, a new strategy for discovering novel secondary metabolites is needed. Many researchers believe that actinomycetes have as yet unanalyzed secondary metabolic activities, and the associated undiscovered secondary metabolite biosynthesis genes are called "silent" genes. This review outlines several approaches to further activate the metabolic potential of actinomycetes.
Collapse
Affiliation(s)
- Shun Saito
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Midori A Arai
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
5
|
Feng XY, Li JH, Li RJ, Yuan SZ, Sun YJ, Peng XP, Dong H, Lou HX, Li G. Structures, Biosynthesis, and Bioactivity of Oligomycins from the Marine-Derived Streptomyces sp. FXY-T5. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1082-1095. [PMID: 38169320 DOI: 10.1021/acs.jafc.3c06307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Oligomycins are potent antifungal and antitumor agents. Mass spectrometry (MS)- and nuclear magnetic resonance (NMR)-based metabolomic fingerprinting analysis of marine-derived actinomycetes in our in-house library provided an oligomycin-producing strain, Streptomyces sp. FXY-T5. Chemical investigation led to the discovery of five new oligomycins, 24-lumooligomycin B (1), 4-lumooligomycin B (2), 6-lumooligomycin B (3), 40-homooligomycin B (4), and 15-hydroxy-oligomycin B (5), together with seven biosynthetically related known derivatives. Their structures were assigned by MS, NMR, electronic circular dichroism (ECD), and single-crystal X-ray diffraction analyses. The biosynthesis pathway of oligomycins was first proposed based on the analysis of a type I modular polyketide synthase (PKS) system and targeted gene disruption. As expected, the isolated oligomycins showed significant antiagricultural fungal pathogen activity and antiproliferative properties from which the possible structure-activity relationships were first suggested. More importantly, oligomycins induced significant G1-phase cell cycle arrest on cancer cells and significantly attenuated their Cyclin D1 and PCNA expression through a β-catenin signaling pathway.
Collapse
Affiliation(s)
- Xue-Yan Feng
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao 266071, People's Republic of China
| | - Jun-Hui Li
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao 266071, People's Republic of China
| | - Rui-Juan Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People's Republic of China
| | - Shuang-Zhi Yuan
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, People's Republic of China
| | - Yan-Jun Sun
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao 266071, People's Republic of China
| | - Xiao-Ping Peng
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao 266071, People's Republic of China
| | - Hui Dong
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao 266071, People's Republic of China
| | - Hong-Xiang Lou
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao 266071, People's Republic of China
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, People's Republic of China
| | - Gang Li
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao 266071, People's Republic of China
| |
Collapse
|
6
|
Zha X, Ji R, Zhou S. Marine Bacteria: A Source of Novel Bioactive Natural Products. Curr Med Chem 2024; 31:6842-6854. [PMID: 37605398 DOI: 10.2174/0929867331666230821102521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/29/2023] [Accepted: 07/07/2023] [Indexed: 08/23/2023]
Abstract
Marine natural products have great pharmacological potential due to their unique and diverse chemical structures. The marine bacterial biodiversity and the unique marine environment lead to a high level of complexity and ecological interaction among marine species. This results in the production of metabolic pathways and adaptation mechanisms that are different from those of terrestrial organisms, which has drawn significant attention from researchers in the field of natural medicine. This review provides an analysis of the distribution and frequency of keywords in the literature on marine bacterial natural products as well as an overview of the new natural products isolated from the secondary metabolites of marine bacteria in recent years. Finally, it discusses the current research hotspots in this field and speculates on future directions and limitations.
Collapse
Affiliation(s)
- Xiangru Zha
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Key Laboratory of Tropical Molecular Pharmacology and Advanced Diagnostic Technology, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Rong Ji
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Key Laboratory of Tropical Molecular Pharmacology and Advanced Diagnostic Technology, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Songlin Zhou
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Key Laboratory of Tropical Molecular Pharmacology and Advanced Diagnostic Technology, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, China
| |
Collapse
|
7
|
Hegazy GE, Olama ZA, Abou-Elela GM, Ramadan HS, Ibrahim WM, El Badan DES. Biodiversity and biological applications of marine actinomycetes-Abu-Qir Bay, Mediterranean Sea, Egypt. J Genet Eng Biotechnol 2023; 21:150. [PMID: 38015326 PMCID: PMC10684441 DOI: 10.1186/s43141-023-00612-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND The ability of actinomycetes to produce bioactive secondary metabolites makes them one of the most important prokaryotes. Marine actinomycetes are one of the most important secondary metabolites producers used for pharmaceuticals and other different industries. RESULTS In this study, the promising actinomycetes were isolated from Abu-Qir Bay. Four different media named as starch nitrate, starch casein, glycerol asparagine, and glycerol glycine were used as a preliminary experimental media to study the role of the medium components on the counts of actinomycetes in sediment samples. The results indicated that starch casein medium reported the highest counts (30-63 CFU/g) in all the tested sites. Lower counts were detected on starch nitrate and glycerol asparagine. On the other hand, glycerol glycine medium gave the lowest counts (15-48 CFU/g). Abu-Qir8 harbored the highest average count of actinomycetes (63 CFU/g), followed by Abu-Qir1 (48 CFU/g). The lower counts were detected in Abu-Qir5 and Abu-Qir7 (26 and 29 CFU/g, respectively). A total of 12 pure obtained actinomycetes isolates were subjected to morphological, physiological, and biochemical characterization. The selected actinobacterial isolates were subjected to numerical analysis, and the majority of isolates were grouped into four main clusters (A, B, C, & D), and each of them harbored two isolates; additionally, four isolates did not cluster at this similarity level. Isolate W4 was carefully chosen as the most promising pigment and antimicrobial agent's producer; the produced pigment was extracted and optimized by statistical experiments (PBD & BBD) and was tested for its anti-inflammatory activity. The results showed anti-inflammatory effect and prevented the denaturation of BSA protein at a concentration much higher than the safe dose and increased with increasing the pigment concentration. CONCLUSION Marine actinomycetes play a vital role in the production of novel and important economic metabolites that have many industrial and pharmaceuticals applications. Streptomyces genera are the most important actinomycetes that produce important metabolites as previously reported.
Collapse
Affiliation(s)
- Ghada E Hegazy
- National Institute of Oceanography and Fisheries (NIOF), Qaitbay Sq, El-Anfousy, Alexandria, 11865, Egypt.
| | - Zakia A Olama
- Botany & Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - G M Abou-Elela
- National Institute of Oceanography and Fisheries (NIOF), Qaitbay Sq, El-Anfousy, Alexandria, 11865, Egypt
| | - Heba S Ramadan
- Botany & Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Walaa M Ibrahim
- Botany & Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Dalia El S El Badan
- Botany & Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, Lebanon
| |
Collapse
|
8
|
Martins NDRC, Rodrigues da Silva A, Ratcliffe N, Evangelho VGO, Castro HC, Quinn GA. Streptomyces: a natural source of anti- Candida agents. J Med Microbiol 2023; 72. [PMID: 37991419 DOI: 10.1099/jmm.0.001777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023] Open
Abstract
Introduction. There is an urgent need to source new compounds that can combat the current threat of serious infection caused by Candida spp. and contend with the problem of antimicrobial resistance.
Gap. A synthesis of the evidence available from the current literature is needed to identify promising antifungal chemotherapeutics.
Aim. To highlight anti-Candida compounds derived from
Streptomyces
spp. (a well-known source of antimicrobial compounds) that could translate to potential candidates for future clinical practice.
Methodology. A comprehensive review was conducted across three scientific literature databases spanning a 13-year period.
Results. We identified 151 compounds with anti-Candida activity. Amongst these, 40 were reported with very strong inhibitory activity, having minimum inhibitory concentrations (MICs) against Candida spp. of <3.5 µg ml−1, 66 compounds were considered strong inhibitors and 45 compounds exhibited moderate inhibitory potential. From an analysis of the MICs, we deduced that the actinomycin-like compounds RSP01 and RSP02 were probably the most promising anti-Candida compounds. Other antifungals of note included filipin-like compounds, which demonstrated superior inhibition to amphotericin B and activity against Candida glabrata and Candida krusei, and bafilomycin derivatives, which had substantial inhibition against Candida parapsilosis.
Conclusion. It is essential to recognize the limitations inherent in the quest for new antifungals, which encompass toxicity, in vivo effectiveness and constraints associated with limited data access. However, further investigation through in-depth study and emerging technologies is of paramount importance, given that there are still many more compounds to discover. This review highlights the importance of antifungal compounds derived from
Streptomyces
, which demonstrate robust inhibition, and, in many cases, low toxicity, making them promising candidates for the development of novel antifungal agents.
Collapse
Affiliation(s)
| | - Aldo Rodrigues da Silva
- Programa de Pós-Graduação em Patologia, Hospital Universitário Antônio Pedro, Niterói, Brazil
| | - Norman Ratcliffe
- Programa de Pós-graduação em Ciências e Biotecnologia, LABiEMol, Universidade Federal Fluminense, Niterói, Brazil
- Swansea University, Wales, UK
| | | | - Helena Carla Castro
- Programa de Pós-Graduação em Patologia, Hospital Universitário Antônio Pedro, Niterói, Brazil
- Programa de Pós-graduação em Ciências e Biotecnologia, LABiEMol, Universidade Federal Fluminense, Niterói, Brazil
| | - Gerry A Quinn
- Institute of Biomedical Sciences, Ulster University, Coleraine, Ireland
| |
Collapse
|
9
|
Morgan RN, Ali AA, Alshahrani MY, Aboshanab KM. New Insights on Biological Activities, Chemical Compositions, and Classifications of Marine Actinomycetes Antifouling Agents. Microorganisms 2023; 11:2444. [PMID: 37894102 PMCID: PMC10609280 DOI: 10.3390/microorganisms11102444] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Biofouling is the assemblage of undesirable biological materials and macro-organisms (barnacles, mussels, etc.) on submerged surfaces, which has unfavorable impacts on the economy and maritime environments. Recently, research efforts have focused on isolating natural, eco-friendly antifouling agents to counteract the toxicities of synthetic antifouling agents. Marine actinomycetes produce a multitude of active metabolites, some of which acquire antifouling properties. These antifouling compounds have chemical structures that fall under the terpenoids, polyketides, furanones, and alkaloids chemical groups. These compounds demonstrate eminent antimicrobial vigor associated with antiquorum sensing and antibiofilm potentialities against both Gram-positive and -negative bacteria. They have also constrained larval settlements and the acetylcholinesterase enzyme, suggesting a strong anti-macrofouling activity. Despite their promising in vitro and in vivo biological activities, scaled-up production of natural antifouling agents retrieved from marine actinomycetes remains inapplicable and challenging. This might be attributed to their relatively low yield, the unreliability of in vitro tests, and the need for optimization before scaled-up manufacturing. This review will focus on some of the most recent marine actinomycete-derived antifouling agents, featuring their biological activities and chemical varieties after providing a quick overview of the disadvantages of fouling and commercially available synthetic antifouling agents. It will also offer different prospects of optimizations and analysis to scale up their industrial manufacturing for potential usage as antifouling coatings and antimicrobial and therapeutic agents.
Collapse
Affiliation(s)
- Radwa N. Morgan
- National Centre for Radiation Research and Technology (NCRRT), Drug Radiation Research Department, Egyptian Atomic Energy Authority (EAEA), Ahmed El-Zomor St, Cairo 11787, Egypt;
| | - Amer Al Ali
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, University of Bisha, 255, Al Nakhil, Bisha 67714, Saudi Arabia;
| | - Mohammad Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 9088, Saudi Arabia;
| | - Khaled M. Aboshanab
- Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbassia, Cairo 11566, Egypt
| |
Collapse
|
10
|
Nallathambi S, Sam AJ, Vincent SGP. Draft genome sequence of Streptomyces sp. strain ICN988, isolated from Gorgonia sp. Microbiol Resour Announc 2023; 12:e0028523. [PMID: 37594283 PMCID: PMC10508175 DOI: 10.1128/mra.00285-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/29/2023] [Indexed: 08/19/2023] Open
Abstract
This study elucidates the draft genomic sequence of Streptomyces sp. strain ICN988, an actinomycete isolated from Gorgonia. The assembled genome consists of 6,122,654 bp with a GC content of 73%. A comprehensive analysis revealed 19 biosynthetic gene clusters.
Collapse
Affiliation(s)
- Sangeetha Nallathambi
- Centre for Marine Science and Technology (CMST), Manonmaniam Sundaranar University, Rajakkamangalam, Tamil Nadu, India
| | - Albert Joshua Sam
- Centre for Marine Science and Technology (CMST), Manonmaniam Sundaranar University, Rajakkamangalam, Tamil Nadu, India
| | - Samuel Gnana Prakash Vincent
- Centre for Marine Science and Technology (CMST), Manonmaniam Sundaranar University, Rajakkamangalam, Tamil Nadu, India
| |
Collapse
|
11
|
Cooreman K, De Spiegeleer B, Van Poucke C, Vanavermaete D, Delbare D, Wynendaele E, De Witte B. Emerging pharmaceutical therapies of Ascidian-derived natural products and derivatives. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104254. [PMID: 37648122 DOI: 10.1016/j.etap.2023.104254] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
In a growing multidrug-resistant environment, the identification of potential new drug candidates with an acceptable safety profile is a substantial crux in pharmaceutical discovery. This review discusses several aspects and properties of approved marine natural products derived from ascidian sources (phylum Chordata, subphylum Tunicata) and/or their deduced analogues including their biosynthetic origin, (bio)chemical preclinical assessments and known efficacy-safety profiles, clinical status in trials, but also translational developments, opportunities and final conclusions. The review also describes the preclinical assessments of a large number of other ascidian compounds that have not been involved in clinical trials yet. Finally, the emerging research on the connectivity of the ascidian hosts and their independent or obligate symbiotic guests is discussed. The review covers the latest information on the topic of ascidian-derived marine natural products over the last two decades including 2022, with the majority of publications published in the last decade.
Collapse
Affiliation(s)
- Kris Cooreman
- Aquatic Environment and Quality, Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Jacobsenstraat 1, BE-8400 Ostend, Belgium
| | - Bart De Spiegeleer
- Faculty of Pharmaceutical Sciences, Drug Quality and Registration Group, Ghent University, Ottergemsesteenweg 460, BE-9000 Ghent, Belgium
| | - Christof Van Poucke
- Technology and Food Science Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Brusselsesteenweg 370, BE-9090 Melle, Belgium
| | - David Vanavermaete
- Aquatic Environment and Quality, Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Jacobsenstraat 1, BE-8400 Ostend, Belgium
| | - Daan Delbare
- Aquatic Environment and Quality, Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Jacobsenstraat 1, BE-8400 Ostend, Belgium
| | - Evelien Wynendaele
- Faculty of Pharmaceutical Sciences, Drug Quality and Registration Group, Ghent University, Ottergemsesteenweg 460, BE-9000 Ghent, Belgium
| | - Bavo De Witte
- Aquatic Environment and Quality, Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Jacobsenstraat 1, BE-8400 Ostend, Belgium.
| |
Collapse
|
12
|
Yan F, Fang J, Ding W, Tang X, Chen X, Ma Z, Wang J. Structurally Diverse Metabolites from the Marine-Derived Streptomyces sp. DS-27 Based on Two Different Culture Conditions. Chem Biodivers 2023; 20:e202301017. [PMID: 37603393 DOI: 10.1002/cbdv.202301017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023]
Abstract
Nine new compounds, including streptothiomycin A-E (1-5), two cyclopentenones (6, 7), one α-pyrone (8), wailupemycin Q (20), along with sixteen known compounds were identified from a rhizosphere strain Streptomyces sp. DS-27 derived from the marine cordgrass Spartina alterniflora under two different culture conditions. All of the structures were elucidated by extensive analysis of 1D/2D NMR and HR-ESI-MS data. The absolute configurations were determined by NOESY analysis, ECD, specific rotation and GIAO NMR calculations, and DP4+ probability analysis. Bioactivity investigation showed that compounds 5 and 7 exhibited significant inhibitory effects on LPS-induced NO production in a dose-dependent manner, which indicates their anti-inflammatory potential.
Collapse
Affiliation(s)
- Feihang Yan
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, China
| | - Jiebin Fang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, China
| | - Wanjing Ding
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, China
- Hainan Institute of Zhejiang University, Sanya, 572025, China
| | - Xinyi Tang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, China
| | - Xiaoming Chen
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, China
| | - Zhongjun Ma
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, China
- Hainan Institute of Zhejiang University, Sanya, 572025, China
| | - Jinhui Wang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, China
| |
Collapse
|
13
|
Goel N, Zaidi S, Khare SK. Whole genome sequencing and functional analysis of a novel biofilm-eradicating strain Nocardiopsis lucentensis EMB25. World J Microbiol Biotechnol 2023; 39:292. [PMID: 37653174 DOI: 10.1007/s11274-023-03738-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/24/2023] [Indexed: 09/02/2023]
Abstract
The process of biofilm formation is intricate and multifaceted, requiring the individual cells to secrete extracellular polymeric substances (EPS) that subsequently aggregate and adhere to various surfaces. The issue of biofilms is a significant concern for public health due to the increased resistance of microorganisms associated with biofilms to antimicrobial agents. The current study describes the whole genome and corresponding functions of a biofilm inhibiting and eradicating actinobacteria isolate identified as Nocardiopsis lucentensis EMB25. The N. lucentensis EMB25 has 6.5 Mbp genome with 71.62% GC content. The genome analysis by BLAST Ring Image Generator (BRIG) revealed it to be closely related to Nocardiopsis dassonvillei NOCA502F. Interestingly, based on orthologous functional groups reflected by average nucleotide identity (ANI) analysis, it was 81.48% similar to N. arvandica DSM4527. Also, it produces lanthipeptides and linear azole(in)e-containing peptides (LAPs) akin to N. arvandica. The secondary metabolite search revealed the presence of major gene clusters involved in terpene, ectoine, siderophores, Lanthipeptides, RiPP-like, and T1PKS biosynthesis. After 24 h of treatment, the cell-free extract effectively eradicates the pre-existing biofilm of P. aeruginosa PseA. Also, the isolated bacteria exhibited antibacterial activity against MRSA, Staphylococcus aureus and Bacillus subtilis bacteria. Overall, this finding offers valuable insights into the identification of BGCs, which contain enzymes that play a role in the biosynthesis of natural products. Specifically, it sheds light on the functional aspects of these BGCs in relation to N. lucentensis.
Collapse
Affiliation(s)
- Nikky Goel
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India
| | - Saniya Zaidi
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India
| | - Sunil Kumar Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
14
|
Delbari Y, Mohassel Y, Kakaei E, Bahrami Y. Identification and anti-bacterial property of endophytic actinobacteria from Thymes kotschyanus, Allium hooshidaryae, and Cerasus microcarpa. Sci Rep 2023; 13:13145. [PMID: 37573468 PMCID: PMC10423286 DOI: 10.1038/s41598-023-40478-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/10/2023] [Indexed: 08/14/2023] Open
Abstract
The arbitrary and overuses of antibiotics have resulted in the emergence of multidrug resistance bacteria which encounters human to a serious public health problem. Thus, there is an ever-increasing demand for discovery of novel effective antibiotics with new modes of function against resistant pathogens. Endophytic actinobacteria (EA) have currently been considered as one of the most prospective group of microorganisms for discovery of therapeutic agents. This study aimed to isolate EA from Thymes kotschyanus, Allium hooshidaryae, and Cerasus microcarpa plants and to evaluate their antibacterial properties. The healthy samples were collected, dissected and surface-sterilized before cultured on four different selection media at 28 °C. Nine EA were isolated and identified based on morphological and molecular properties, and scanning electron micrograph analyses. Based on phylogenetic analysis, they were taxonomically grouped into four families Streptomycetaceae, Nocardiaceae, Micromonosporaceae, and Pseudonocardiaceae. Their branched aerial mycelia produced chains of cylindrical or cube or oval shaped spores with smooth or rough surfaces. Four strains; IKBG03, IKBG05, IKBG13, and IKBG17 had less than 98.65% sequence similarity to their closely related strains, which constitute them as novel species/strains. Besides, three strains; IKBG05, IKBG13, and IKBG18 were reported as endophytes for the first time. Preliminary antibacterial activity conducted on the all isolates revealed potent antibacterial effects against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. All isolates strongly inhibited the growth of at least one of the tested pathogens. Our results reveals that the test plants are novel sources for isolating a diverse group of rare and common actinobacteria that could produce a wide range of novel biologically active natural products with antibacterial activity which have a great potential in pharmaceutical and biotechnological applications.
Collapse
Affiliation(s)
- Yaser Delbari
- Department of Medical Biotechnology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yaser Mohassel
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Kakaei
- Department of Medical Biotechnology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yadollah Bahrami
- Department of Medical Biotechnology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Department of Medical Biotechnology, School of Medicine, College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia.
- Advanced Marine Biomanufacturing Laboratory, Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia.
| |
Collapse
|
15
|
Xiong Z, Wang R, Xia T, Zhang S, Ma S, Guo Z. Natural Products and Biological Activity from Actinomycetes Associated with Marine Algae. Molecules 2023; 28:5138. [PMID: 37446800 DOI: 10.3390/molecules28135138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Marine natural products have been recognized as the most promising source of bioactive substances for drug discovery research. This review illustrates the diversity of culturable actinobacteria associated with marine algae, their bioactivity and metabolites, and approaches to their isolation and determination of their biological properties. Furthermore, actinobacteria associated with marine algae are presented as a new subject for an extensive investigation to find novel and active natural products, which make them a potentially rich and innovative source for new drug development deserving more attention and exploration.
Collapse
Affiliation(s)
- Zijun Xiong
- Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
| | - Rong Wang
- Hainan Provincial Key Laboratory of Tropical Maricultural Technologies, Hainan Academy of Ocean and Fisheries Sciences, Haikou 571126, China
| | - Tengfei Xia
- Institute of Tropical Horticulture Research, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| | - Shiqing Zhang
- Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
| | - Shuai Ma
- Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
| | - Zhikai Guo
- Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
| |
Collapse
|
16
|
Development of Crosslinker-Free Polysaccharide-Lysozyme Microspheres for Treatment Enteric Infection. Polymers (Basel) 2023; 15:polym15051077. [PMID: 36904318 PMCID: PMC10007162 DOI: 10.3390/polym15051077] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/18/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023] Open
Abstract
Antibiotic abuse in the conventional treatment of microbial infections, such as inflammatory bowel disease, induces cumulative toxicity and antimicrobial resistance which requires the development of new antibiotics or novel strategies for infection control. Crosslinker-free polysaccharide-lysozyme microspheres were constructed via an electrostatic layer-by-layer self-assembly technique by adjusting the assembly behaviors of carboxymethyl starch (CMS) on lysozyme and subsequently outer cationic chitosan (CS) deposition. The relative enzymatic activity and in vitro release profile of lysozyme under simulated gastric and intestinal fluids were investigated. The highest loading efficiency of the optimized CS/CMS-lysozyme micro-gels reached 84.9% by tailoring CMS/CS content. The mild particle preparation procedure retained relative activity of 107.4% compared with free lysozyme, and successfully enhanced the antibacterial activity against E. coli due to the superposition effect of CS and lysozyme. Additionally, the particle system showed no toxicity to human cells. In vitro digestibility testified that almost 70% was recorded in the simulated intestinal fluid within 6 h. Results demonstrated that the cross-linker-free CS/CMS-lysozyme microspheres could be a promising antibacterial additive for enteric infection treatment due to its highest effective dose (573.08 μg/mL) and fast release at the intestinal tract.
Collapse
|
17
|
Bioactivity of bacteria associated with Red Sea nudibranchs and whole genome sequence of Nocardiopsis dassonvillei RACA-4. Mar Genomics 2023; 67:101004. [PMID: 36521348 DOI: 10.1016/j.margen.2022.101004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/09/2022] [Accepted: 11/12/2022] [Indexed: 12/14/2022]
Abstract
Microorganisms associated with marine invertebrates consider an important source of bioactive products. This study aimed to screen for antimicrobial and anticancer activity of crude extracts of bacteria associated with Red sea nudibranchs and molecular identification of the bioactive isolates using 16Sr RNA sequencing, in addition to whole-genome sequencing of one of the most bioactive bacteria. This study showed that bacteria associated with Red sea nudibranchs are highly bioactive and 16Sr RNA sequencing results showed that two isolates belonged to Firmicutes, and two isolates belonged to Proteobacteria, and Actinobacteria. The whole genome sequence data of the isolated Nocardiopsis RACA4 isolate has an estimated genome length of 6,721,839 bp and the taxonomy showed it belongs to the bacteria Nocardiopsis dassonvillei. The De novo assembly of RACA-4 paired reads using Unicycler v0.4.8 initially yielded 97 contigs with an N50 value of 214,568 bp and L50 value of 10, The resulting assembly was further mapped to the reference genome Nocardiopsis dassonvillei strain NCTC10488 using RagTag software v.2.1.0 and a final genome assembly resulted in 39 contigs and N50 value of 6,726,007 and L50 of 1. Genome mining using anti-smash showed around 9.1% of the genome occupied with genes related to secondary metabolites biosynthesis. A wide variety of secondary metabolites belonging to Polyketides, Terpenes, and nonribosomal peptides were predicted with high degree of similarity to known compounds. Non-characterized clusters were also found which suggest new natural compounds discovered by further studies.
Collapse
|
18
|
Świecimska M, Golińska P, Goodfellow M. Generation of a high quality library of bioactive filamentous actinomycetes from extreme biomes using a culture-based bioprospecting strategy. Front Microbiol 2023; 13:1054384. [PMID: 36741889 PMCID: PMC9893292 DOI: 10.3389/fmicb.2022.1054384] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023] Open
Abstract
Introduction Filamentous actinomycetes, notably members of the genus Streptomyces, remain a rich source of new specialized metabolites, especially antibiotics. In addition, they are also a valuable source of anticancer and biocontrol agents, biofertilizers, enzymes, immunosuppressive drugs and other biologically active compounds. The new natural products needed for such purposes are now being sought from extreme habitats where harsh environmental conditions select for novel strains with distinctive features, notably an ability to produce specialized metabolites of biotechnological value. Methods A culture-based bioprospecting strategy was used to isolate and screen filamentous actinomycetes from three poorly studied extreme biomes. Actinomycetes representing different colony types growing on selective media inoculated with environmental suspensions prepared from high-altitude, hyper-arid Atacama Desert soils, a saline soil from India and from a Polish pine forest soil were assigned to taxonomically predictive groups based on characteristic pigments formed on oatmeal agar. One hundred and fifteen representatives of the colour-groups were identified based on 16S rRNA gene sequences to determine whether they belonged to validly named or to putatively novel species. The antimicrobial activity of these isolates was determined using a standard plate assay. They were also tested for their capacity to produce hydrolytic enzymes and compounds known to promote plant growth while representative strains from the pine forest sites were examined to determine their ability to inhibit the growth of fungal and oomycete plant pathogens. Results Comparative 16S rRNA gene sequencing analyses on isolates representing the colour-groups and their immediate phylogenetic neighbours showed that most belonged to either rare or novel species that belong to twelve genera. Representative isolates from the three extreme biomes showed different patterns of taxonomic diversity and characteristic bioactivity profiles. Many of the isolates produced bioactive compounds that inhibited the growth of one or more strains from a panel of nine wild strains in standard antimicrobial assays and are known to promote plant growth. Actinomycetes from the litter and mineral horizons of the pine forest, including acidotolerant and acidophilic strains belonging to the genera Actinacidiphila, Streptacidiphilus and Streptomyces, showed a remarkable ability to inhibit the growth of diverse fungal and oomycete plant pathogens. Discussion It can be concluded that selective isolation and characterization of dereplicated filamentous actinomyctes from several extreme biomes is a practical way of generating high quality actinomycete strain libraries for agricultural, industrial and medical biotechnology.
Collapse
Affiliation(s)
- Magdalena Świecimska
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Patrycja Golińska
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Michael Goodfellow
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
19
|
Ramalingam V, Varunkumar K, Ravikumar V, Rajaram R. N-(2-hydroxyphenyl)-2-phenazinamine from Nocardiopsis exhalans induces p53-mediated intrinsic apoptosis signaling in lung cancer cell lines. Chem Biol Interact 2023; 369:110282. [PMID: 36427553 DOI: 10.1016/j.cbi.2022.110282] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/14/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
The present study aims to investigate the effect and the molecular mechanism of N-(2-hydroxyphenyl)-2-phenazinamine (NHP) isolated from Nocardiopsis exhalans against the proliferation of human lung cancer cells. The cytotoxic activity of NHP against A549 and H520 cells was determined using MTT assay. The cytotoxic activity of NHP against A549 and H520 lung cancer cells showed excellent activity at 75 μg/mL and damage the mitochondrial membrane and nucleus by generating oxidative stress. NHP causes nuclear condensation and induces apoptosis which was confirmed using AO/EB and PI/DAPI dual staining assay. Moreover, the NHP downregulates the oncogenic genes such as IL-8, TNFα, MMPs and BcL2 and also upregulates the expression of apoptosis marker genes such as Cyto C, p53, p21, caspase 9/3 in A549 and H520 human lung cancer cells. Considering the strong anticancer activity of NHP against lung cancer, NHP may be further evaluated as a potential anticancer drug for the treatment of lung cancer.
Collapse
Affiliation(s)
- Vaikundamoorthy Ramalingam
- Centre for Natural Products and Traditional Knowledge, Indian Institute of Chemical Technology, Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India.
| | | | | | - Rajendran Rajaram
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, India.
| |
Collapse
|
20
|
Fitri LE, Endharti AT, Abidah HY, Khotimah ARH, Endrawati H. Fractions 14 and 36K of Metabolite Extract Streptomyces hygroscopicus subsp. Hygroscopicus Have Antimalarial Activities Against Plasmodium berghei in vitro. Infect Drug Resist 2023; 16:2973-2985. [PMID: 37201124 PMCID: PMC10187656 DOI: 10.2147/idr.s400538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/14/2023] [Indexed: 05/20/2023] Open
Abstract
Purpose The study was conducted to investigate the effectivity and the cytotoxicity of fractions 14 and 36K of metabolite extract of Streptomyces hygroscopicus subsp. Hygroscopicus as an antimalarial compounds against Plasmodium berghei in vitro. Methods Fractions 14 and 36K of metabolite extract of Streptomyces hygroscopicus subsp. Hygroscopicus produced by the fractionation process utilizing the Flash Column Chromatography (FCC) BUCHI Reveleris® PREP. Plasmodium berghei culture was used to assess the antimalarial activity of fractions 14 and 36K. Parasite densities and the ability of parasite growth were determined under microscopic. The cytotoxicity of the fractions was assessed using MTT assays on the MCF-7 cell line. Results Streptomyces hygroscopicus subsp. Hygroscopicus fractions 14 and 36K have antimalarial activity against Plasmodium berghei, with fraction 14 having the more potent activity. The percentage of Plasmodium berghei-infected erythrocytes was decreased as well as the increase of fraction concentration. Fraction 14 has the highest inhibition of parasite growth at a concentration of 156,25 μg/mL, with an inhibition percentage of 67.73% (R2 = 0.953, p = 0.000). IC50 of fractions 14 and 36K were found at 10.63 μg/mL and 135,91 μg/mL, respectively. The fractions caused morphological damage in almost all asexual stages of the parasite. Both fractions were not toxic against MCF-7, indicating that the fractions have a safe active metabolite. Conclusion Fractions 14 and 36K of metabolite extract Streptomyces hygroscopicus subsp. Hygroscopicus contains non-toxic compounds that could damage the morphology and inhibit the growth of Plasmodium berghei in vitro.
Collapse
Affiliation(s)
- Loeki Enggar Fitri
- Department of Parasitology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
- Malaria Research Group, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Agustina Tri Endharti
- Department of Parasitology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Hafshah Yasmina Abidah
- Master Program in Biomedical Science, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
- Medical Doctor Profession Education, Faculty of Medical and Health Science, Maulana Malik Ibrahim State Islamic University, Malang, Indonesia
- Correspondence: Hafshah Yasmina Abidah, Master Program in Biomedical Science, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia, Tel +62 895 397 064 350, Fax +62 341 564755, Email ;
| | - Alif Raudhah Husnul Khotimah
- Master Program in Biomedical Science, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
- Medical Doctor Profession Education, Faculty of Medical and Health Science, Maulana Malik Ibrahim State Islamic University, Malang, Indonesia
| | - Heni Endrawati
- Department of Parasitology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| |
Collapse
|
21
|
Sarmiento-Vizcaíno A, Martín J, Ortiz-López FJ, Reyes F, García LA, Blanco G. Natural products, including a new caboxamycin, from Streptomyces and other Actinobacteria isolated in Spain from storm clouds transported by Northern winds of Arctic origin. Front Chem 2022; 10:948795. [DOI: 10.3389/fchem.2022.948795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Actinobacteria, mostly Streptomyces species, are the main source of natural products essential in medicine. While the majority of producer microorganisms of secondary metabolite are reported from terrestrial or marine environments, there are limited reports of their isolation from atmospheric precipitations. Clouds are considered as atmospheric oases for microorganisms and there is a recent paradigm shift whereby atmospheric-derived Actinobacteria emerge as an alternative source for drug discovery. In this context, we studied a total of 18 bioactive Actinobacteria strains, isolated by sampling nine precipitation events with prevailing Northern winds in the Cantabrian Sea coast, Northern Spain. Backward trajectories meteorological analyses indicate that air masses were originated mostly in the Arctic Ocean, and their trajectory to downwind areas involved the Atlantic Ocean and also terrestrial sources from continental Europe, and in some events from Canada, Greenland, Mauritania and Canary Islands. Taxonomic identification of the isolates, by 16S rRNA gene sequencing and phylogenetic analyses, revealed that they are members of three Actinobacteria genera. Fifteen of the isolates are Streptomyces species, thus increasing the number of bioactive species of this genus in the atmosphere to a 6.8% of the total currently validated species. In addition, two of the strains belong to the genus Micromonospora and one to genus Nocardiopsis. These findings reinforce a previous atmospheric dispersal model, extended herein to the genus Micromonospora. Production of bioactive secondary metabolites was screened in ethyl acetate extracts of the strains by LC-UV-MS and a total of 94 secondary metabolites were detected after LC/MS dereplication. Comparative analyses with natural products databases allowed the identification of 69 structurally diverse natural products with contrasted biological activities, mostly as antibiotics and antitumor agents, but also anti-inflammatory, antiviral, antiparasitic, immunosuppressant and neuroprotective among others. The molecular formulae of the 25 remaining compounds were determined by HRMS. None of these molecules had been previously reported in natural product databases indicating potentially novel metabolites. As a proof of concept, a new metabolite caboxamycin B (1) was isolated from the culture broth of Streptomyces sp. A-177 and its structure was determined by various spectrometric methods. To the best of our knowledge, this is the first novel natural product obtained from an atmospheric Streptomyces, thus pointing out precipitations as an innovative source for discovering new pharmaceutical natural products.
Collapse
|
22
|
Chen L, Wang XN, Bi HY, Wang GY. Antimicrobial Biosynthetic Potential and Phylogenetic Analysis of Culturable Bacteria Associated with the Sponge Ophlitaspongia sp. from the Yellow Sea, China. Mar Drugs 2022; 20:md20100588. [PMID: 36286412 PMCID: PMC9605435 DOI: 10.3390/md20100588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/25/2022] Open
Abstract
Sponge-derived bacteria are considered to be a promising source of novel drugs, owing to their abundant secondary metabolites that have diverse biological activities. In this study, we explored the antimicrobial biosynthetic potential and phylogenetics of culturable bacteria associated with the sponge Ophlitaspongia sp. from the Yellow Sea, China. Using culture-dependent methods, we obtained 151 bacterial strains, which were then analysed for their antimicrobial activities against seven indicator strains. The results indicate that 94 (62.3%) of the 151 isolated strains exhibited antimicrobial activities and inhibited at least one of the indicator strains. Fifty-two strains were selected for further phylogenetic analysis using 16S rRNA gene sequencing, as well as for the presence of polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS) genes. These 52 strains belonged to 20 genera from 18 families in 4 phyla, including Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria. Five strains with PKS genes and ten strains with NRPS genes were detected. Among them, two strains contained both PKS and NRPS genes. Notoacmeibacter sp. strain HMA008 (class Alphaproteobacteria) exhibited potent antimicrobial activity; thus, whole genome sequencing methods were used to analyse its secondary metabolite biosynthetic gene clusters. The genome of HMA008 contained 12 biosynthetic gene clusters that potentially encode secondary metabolites belonging to compound classes such as non-ribosomal peptides, prodigiosin, terpene, β-lactones, and siderophore, among others. This study indicates that the sponge Ophlitaspongia sp. harbours diverse bacterial strains with antimicrobial properties and may serve as a potential source of bioactive compounds.
Collapse
Affiliation(s)
- Lei Chen
- Department of Bioengineering, School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
- Correspondence: (L.C.); (G.-Y.W.)
| | - Xue-Ning Wang
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hong-Yu Bi
- Department of Bioengineering, School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Guang-Yu Wang
- Department of Bioengineering, School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
- Correspondence: (L.C.); (G.-Y.W.)
| |
Collapse
|
23
|
Genus Nocardiopsis: A Prolific Producer of Natural Products. Mar Drugs 2022; 20:md20060374. [PMID: 35736177 PMCID: PMC9231205 DOI: 10.3390/md20060374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Actinomycetes are currently one of the major sources of bioactive secondary metabolites used for medicine development. Accumulating evidence has shown that Nocardiopsis, a key class of actinomycetes, has the ability to produce novel bioactive natural products. This review covers the sources, distribution, bioactivities, biosynthesis, and structural characteristics of compounds isolated from Nocardiopsis in the period between March 2018 and 2021. Our results reveal that 67% of Nocardiopsis-derived natural products are reported for the first time, and 73% of them are isolated from marine Nocardiopsis. The chemical structures of the Nocardiopsis-derived compounds have diverse skeletons, concentrating on the categories of polyketides, peptides, terphenyls, and alkaloids. Almost 50% of the natural products isolated from Nocardiopsis have been discovered to display various bioactivities. These results fully demonstrate the great potential of the genus Nocardiopsis to produce novel bioactive secondary metabolites that may serve as a structural foundation for the development of novel drugs.
Collapse
|
24
|
Zhu WZ, Wang SH, Gao HM, Ge YM, Dai J, Zhang XL, Yang Q. Characterization of Bioactivities and Biosynthesis of Angucycline/Angucyclinone Derivatives Derived from Gephyromycinifex aptenodytis gen. nov., sp. nov. Mar Drugs 2021; 20:md20010034. [PMID: 35049888 PMCID: PMC8779670 DOI: 10.3390/md20010034] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 12/25/2021] [Accepted: 12/28/2021] [Indexed: 12/30/2022] Open
Abstract
Strain NJES-13T is the type strain and currently the only species of the newly established actinobacteria genera Aptenodytes in the family Dermatophilaceae isolated from the gut microbiota of the Antarctic emperor penguin. This strain demonstrated excellent bioflocculation activity with bacteria-derived exopolysaccharides (EPSs). Moreover, it produced bioactive angucycline/angucyclinone derivatives (ADs) and contained one type III polyketide synthase (T3PKS), thus demonstrating great potential to produce novel bioactive compounds. However, the low productivity of the potential new AD metabolite was the main obstacle for its chemical structure elucidation. In this study, to increase the concentration of targeted metabolites, the influence of cellular morphology on AD metabolism in strain NJES-13T was determined using glass bead-enhanced fermentation. Based on the cellular ultra-structural observation driven by bacterial EPSs, and quantitative analysis of the targeted metabolites, the successful increasing of the productivity of three AD metabolites was achieved. Afterward, a new frigocyclinone analogue was isolated and then identified as 2-hydroxy-frigocyclinone, as well as two other known ADs named 2-hydroxy-tetrangomycin (2-HT) and gephyromycin (GPM). Three AD metabolites were found to demonstrate different bioactivities. Both C-2 hydroxyl substitutes, 2-hydroxy-tetrangomycin and 2-hydroxy-frigocyclinone, exhibited variable inhibitory activities against Staphylococcus aureus, Bacillus subtilis and Candida albicans. Moreover, the newly identified 2-hydroxy-frigocyclinone also showed significant cytotoxicity against three tested human-derived cancerous cell lines (HL-60, Bel-7402 and A549), with all obtained IC50 values less than 10 µM. Based on the genetic analysis after genomic mining, the plausible biogenetic pathway of the three bioactive ADs in strain NJES-13T was also proposed.
Collapse
Affiliation(s)
- Wen-Zhuo Zhu
- Department of Marine Chemistry, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China; (W.-Z.Z.); (S.-H.W.); (H.-M.G.)
| | - Shu-Heng Wang
- Department of Marine Chemistry, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China; (W.-Z.Z.); (S.-H.W.); (H.-M.G.)
| | - Hui-Min Gao
- Department of Marine Chemistry, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China; (W.-Z.Z.); (S.-H.W.); (H.-M.G.)
| | - Ya-Ming Ge
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316021, China;
| | - Jun Dai
- Natural “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), College of Bioengineering, Hubei University of Technology, Wuhan 430068, China;
| | - Xiao-Ling Zhang
- Department of Marine Chemistry, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China; (W.-Z.Z.); (S.-H.W.); (H.-M.G.)
- ABI Group, Zhejiang Ocean University, Zhoushan 316022, China
- Correspondence: (X.-L.Z.); (Q.Y.)
| | - Qiao Yang
- Department of Marine Chemistry, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China; (W.-Z.Z.); (S.-H.W.); (H.-M.G.)
- ABI Group, Zhejiang Ocean University, Zhoushan 316022, China
- Department of Environment Science and Engineering, Zhejiang Ocean University, Zhoushan 316022, China
- Correspondence: (X.-L.Z.); (Q.Y.)
| |
Collapse
|
25
|
De Rop AS, Rombaut J, Willems T, De Graeve M, Vanhaecke L, Hulpiau P, De Maeseneire SL, De Mol ML, Soetaert WK. Novel Alkaloids from Marine Actinobacteria: Discovery and Characterization. Mar Drugs 2021; 20:md20010006. [PMID: 35049861 PMCID: PMC8777666 DOI: 10.3390/md20010006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/14/2021] [Accepted: 12/18/2021] [Indexed: 01/03/2023] Open
Abstract
The marine environment is an excellent resource for natural products with therapeutic potential. Its microbial inhabitants, often associated with other marine organisms, are specialized in the synthesis of bioactive secondary metabolites. Similar to their terrestrial counterparts, marine Actinobacteria are a prevalent source of these natural products. Here, we discuss 77 newly discovered alkaloids produced by such marine Actinobacteria between 2017 and mid-2021, as well as the strategies employed in their elucidation. While 12 different classes of alkaloids were unraveled, indoles, diketopiperazines, glutarimides, indolizidines, and pyrroles were most dominant. Discoveries were mainly based on experimental approaches where microbial extracts were analyzed in relation to novel compounds. Although such experimental procedures have proven useful in the past, the methodologies need adaptations to limit the chance of compound rediscovery. On the other hand, genome mining provides a different angle for natural product discovery. While the technology is still relatively young compared to experimental screening, significant improvement has been made in recent years. Together with synthetic biology tools, both genome mining and extract screening provide excellent opportunities for continued drug discovery from marine Actinobacteria.
Collapse
Affiliation(s)
- Anne-Sofie De Rop
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (A.-S.D.R.); (J.R.); (T.W.); (M.L.D.M.); (W.K.S.)
| | - Jeltien Rombaut
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (A.-S.D.R.); (J.R.); (T.W.); (M.L.D.M.); (W.K.S.)
| | - Thomas Willems
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (A.-S.D.R.); (J.R.); (T.W.); (M.L.D.M.); (W.K.S.)
| | - Marilyn De Graeve
- Laboratory of Chemical Analysis (LCA), Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (M.D.G.); (L.V.)
| | - Lynn Vanhaecke
- Laboratory of Chemical Analysis (LCA), Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (M.D.G.); (L.V.)
| | - Paco Hulpiau
- BioInformatics Knowledge Center (BiKC), Campus Station Brugge, Howest University of Applied Sciences, Rijselstraat 5, 8200 Bruges, Belgium;
| | - Sofie L. De Maeseneire
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (A.-S.D.R.); (J.R.); (T.W.); (M.L.D.M.); (W.K.S.)
- Correspondence:
| | - Maarten L. De Mol
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (A.-S.D.R.); (J.R.); (T.W.); (M.L.D.M.); (W.K.S.)
| | - Wim K. Soetaert
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (A.-S.D.R.); (J.R.); (T.W.); (M.L.D.M.); (W.K.S.)
| |
Collapse
|