1
|
Batasheva S, Kotova S, Frolova A, Fakhrullin R. Atomic force microscopy for characterization of decellularized extracellular matrix (dECM) based materials. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2421739. [PMID: 39559530 PMCID: PMC11573343 DOI: 10.1080/14686996.2024.2421739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/07/2024] [Accepted: 10/22/2024] [Indexed: 11/20/2024]
Abstract
In live organisms, cells are embedded in tissue-specific extracellular matrix (ECM), which provides chemical and mechanical signals important for cell differentiation, migration, and overall functionality. Careful reproduction of ECM properties in artificial cell scaffolds is necessary to get physiologically relevant results of in vitro studies and produce robust materials for cell and tissue engineering. Nanoarchitectonics is a contemporary way to building complex materials from nano-scale objects of artificial and biological origin. Decellularized ECM (dECM), remaining after cell elimination from organs, tissues and cell cultures is arguably the closest equivalent of native ECM achievable today. dECM-based materials can be used as templates or components for producing cell scaffolds using nanoarchitectonic approach. Irrespective of the form, in which dECM is used (whole acellular organ/tissue, bioink or hydrogel), the local stiffness of the dECM scaffold must be evaluated, since the fate of seeded cells depends on the mechanical properties of their environment. Careful dECM characterization is also necessary to reproduce essential ECM traits in artificial cell scaffolds by nanoparticle assembly. Atomic force microscopy (AFM) is a valuable characterization tool, as it allows simultaneous assessment of mechanical and topographic features of the scaffold, and additionally evaluate the efficiency of decellularization process and preservation of the extracellular matrix. This review depicts the current application of AFM in the field of dECM-based materials, including the basics of AFM technique and the use of flicker-noise spectroscopy (FNS) method for the quantification of the dECM micro- and nanostructure.
Collapse
Affiliation(s)
- Svetlana Batasheva
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Republic of Tatarstan Kazan, Russian Federation
| | - Svetlana Kotova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Anastasia Frolova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Rawil Fakhrullin
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Republic of Tatarstan Kazan, Russian Federation
| |
Collapse
|
2
|
Anohova V, Asyakina L, Babich O, Dikaya O, Goikhman A, Maksimova K, Grechkina M, Korobenkov M, Burkova D, Barannikov A, Narikovich A, Chupakhin E, Snigirev A, Antipov S. RETRACTED: Anohova et al. The Dosidicus gigas Collagen for Scaffold Preparation and Cell Cultivation: Mechanical and Physicochemical Properties, Morphology, Composition and Cell Viability. Polymers 2023, 15, 1220. Polymers (Basel) 2024; 16:1512. [PMID: 38891560 PMCID: PMC11174424 DOI: 10.3390/polym16111512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/23/2024] [Indexed: 06/21/2024] Open
Abstract
The Polymers Editorial Office retracts the article, "The Dosidicus gigas Collagen for Scaffold Preparation and Cell Cultivation: Mechanical and Physicochemical Properties, Morphology, Composition and Cell Viability" [...].
Collapse
Affiliation(s)
- Veronika Anohova
- Immanuel Kant Baltic Federal University, Nevskogo 14, Kaliningrad 236006, Russia; (V.A.); (L.A.); (O.B.); (O.D.); (A.G.); (K.M.); (M.K.); (A.B.); (A.N.); (E.C.); (A.S.)
| | - Lyudmila Asyakina
- Immanuel Kant Baltic Federal University, Nevskogo 14, Kaliningrad 236006, Russia; (V.A.); (L.A.); (O.B.); (O.D.); (A.G.); (K.M.); (M.K.); (A.B.); (A.N.); (E.C.); (A.S.)
| | - Olga Babich
- Immanuel Kant Baltic Federal University, Nevskogo 14, Kaliningrad 236006, Russia; (V.A.); (L.A.); (O.B.); (O.D.); (A.G.); (K.M.); (M.K.); (A.B.); (A.N.); (E.C.); (A.S.)
| | - Olga Dikaya
- Immanuel Kant Baltic Federal University, Nevskogo 14, Kaliningrad 236006, Russia; (V.A.); (L.A.); (O.B.); (O.D.); (A.G.); (K.M.); (M.K.); (A.B.); (A.N.); (E.C.); (A.S.)
| | - Aleksandr Goikhman
- Immanuel Kant Baltic Federal University, Nevskogo 14, Kaliningrad 236006, Russia; (V.A.); (L.A.); (O.B.); (O.D.); (A.G.); (K.M.); (M.K.); (A.B.); (A.N.); (E.C.); (A.S.)
| | - Ksenia Maksimova
- Immanuel Kant Baltic Federal University, Nevskogo 14, Kaliningrad 236006, Russia; (V.A.); (L.A.); (O.B.); (O.D.); (A.G.); (K.M.); (M.K.); (A.B.); (A.N.); (E.C.); (A.S.)
| | - Margarita Grechkina
- Voronezh State University, 1, University Square, Voronezh 394063, Russia; (M.G.); (D.B.)
| | - Maxim Korobenkov
- Immanuel Kant Baltic Federal University, Nevskogo 14, Kaliningrad 236006, Russia; (V.A.); (L.A.); (O.B.); (O.D.); (A.G.); (K.M.); (M.K.); (A.B.); (A.N.); (E.C.); (A.S.)
| | - Diana Burkova
- Voronezh State University, 1, University Square, Voronezh 394063, Russia; (M.G.); (D.B.)
| | - Aleksandr Barannikov
- Immanuel Kant Baltic Federal University, Nevskogo 14, Kaliningrad 236006, Russia; (V.A.); (L.A.); (O.B.); (O.D.); (A.G.); (K.M.); (M.K.); (A.B.); (A.N.); (E.C.); (A.S.)
| | - Anton Narikovich
- Immanuel Kant Baltic Federal University, Nevskogo 14, Kaliningrad 236006, Russia; (V.A.); (L.A.); (O.B.); (O.D.); (A.G.); (K.M.); (M.K.); (A.B.); (A.N.); (E.C.); (A.S.)
| | - Evgeny Chupakhin
- Immanuel Kant Baltic Federal University, Nevskogo 14, Kaliningrad 236006, Russia; (V.A.); (L.A.); (O.B.); (O.D.); (A.G.); (K.M.); (M.K.); (A.B.); (A.N.); (E.C.); (A.S.)
- Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Anatoly Snigirev
- Immanuel Kant Baltic Federal University, Nevskogo 14, Kaliningrad 236006, Russia; (V.A.); (L.A.); (O.B.); (O.D.); (A.G.); (K.M.); (M.K.); (A.B.); (A.N.); (E.C.); (A.S.)
| | - Sergey Antipov
- Immanuel Kant Baltic Federal University, Nevskogo 14, Kaliningrad 236006, Russia; (V.A.); (L.A.); (O.B.); (O.D.); (A.G.); (K.M.); (M.K.); (A.B.); (A.N.); (E.C.); (A.S.)
- Voronezh State University, 1, University Square, Voronezh 394063, Russia; (M.G.); (D.B.)
| |
Collapse
|
3
|
Kang H, Han Y, Jin M, Zheng L, Liu Z, Xue Y, Liu Z, Li C. Decellularized squid mantle scaffolds as tissue-engineered corneal stroma for promoting corneal regeneration. Bioeng Transl Med 2023; 8:e10531. [PMID: 37476050 PMCID: PMC10354768 DOI: 10.1002/btm2.10531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 07/22/2023] Open
Abstract
Corneal blindness is a worldwide major cause of vision loss, and corneal transplantation remains to be the most effective way to restore the vision. However, often there is a shortage of the donor corneas for transplantation. Therefore, it is urgent to develop a novel tissue-engineered corneal substitute. The present study envisaged the development of a novel and efficient method to prepare the corneal stromal equivalent from the marine biomaterials-squid. A chemical method was employed to decellularize the squid mantle scaffold to create a cell-free tissue substitute using 0.5% sodium dodecyl sulfate (SDS) solution. Subsequently, a novel clearing method, namely clear, unobstructed brain imaging cocktails (CUBIC) method was used to transparent it. Decellularized squid mantle scaffold (DSMS) has high decellularization efficiency, is rich in essential amino acids, and maintains the regular fiber alignment. In vitro experiments showed that the soaking solution of DSMS was non-toxic to human corneal epithelium cells. DSMS exhibited a good biocompatibility in the rat muscle by undergoing a complete degradation, and promoted the growth of the muscle. In addition, the DSMS showed a good compatibility with the corneal stroma in the rabbit inter-corneal implantation model, and promoted the regeneration of the corneal stroma without any evident rejection. Our results indicate that the squid mantle can be a potential new type of tissue-engineered corneal stroma material with a promising clinical application.
Collapse
Affiliation(s)
- Honghua Kang
- Eye Institute & Affiliated Xiamen Eye Center, School of MedicineXiamen UniversityXiamenChina
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of MedicineXiamen UniversityXiamenChina
| | - Yi Han
- Eye Institute & Affiliated Xiamen Eye Center, School of MedicineXiamen UniversityXiamenChina
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of MedicineXiamen UniversityXiamenChina
| | - Mengyi Jin
- Eye Institute & Affiliated Xiamen Eye Center, School of MedicineXiamen UniversityXiamenChina
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of MedicineXiamen UniversityXiamenChina
| | - Lan Zheng
- Eye Institute & Affiliated Xiamen Eye Center, School of MedicineXiamen UniversityXiamenChina
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of MedicineXiamen UniversityXiamenChina
| | - Zhen Liu
- Eye Institute & Affiliated Xiamen Eye Center, School of MedicineXiamen UniversityXiamenChina
| | - Yuhua Xue
- School of Pharmaceutical SciencesXiamen UniversityXiamenChina
| | - Zuguo Liu
- Eye Institute & Affiliated Xiamen Eye Center, School of MedicineXiamen UniversityXiamenChina
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of MedicineXiamen UniversityXiamenChina
- Department of Ophthalmologythe First Affiliated Hospital of University of South ChinaHengyangHunanChina
| | - Cheng Li
- Eye Institute & Affiliated Xiamen Eye Center, School of MedicineXiamen UniversityXiamenChina
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of MedicineXiamen UniversityXiamenChina
- Department of Ophthalmologythe First Affiliated Hospital of University of South ChinaHengyangHunanChina
| |
Collapse
|
4
|
Amirrah IN, Lokanathan Y, Zulkiflee I, Wee MFMR, Motta A, Fauzi MB. A Comprehensive Review on Collagen Type I Development of Biomaterials for Tissue Engineering: From Biosynthesis to Bioscaffold. Biomedicines 2022; 10:2307. [PMID: 36140407 PMCID: PMC9496548 DOI: 10.3390/biomedicines10092307] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
Collagen is the most abundant structural protein found in humans and mammals, particularly in the extracellular matrix (ECM). Its primary function is to hold the body together. The collagen superfamily of proteins includes over 20 types that have been identified. Yet, collagen type I is the major component in many tissues and can be extracted as a natural biomaterial for various medical and biological purposes. Collagen has multiple advantageous characteristics, including varied sources, biocompatibility, sustainability, low immunogenicity, porosity, and biodegradability. As such, collagen-type-I-based bioscaffolds have been widely used in tissue engineering. Biomaterials based on collagen type I can also be modified to improve their functions, such as by crosslinking to strengthen the mechanical property or adding biochemical factors to enhance their biological activity. This review discusses the complexities of collagen type I structure, biosynthesis, sources for collagen derivatives, methods of isolation and purification, physicochemical characteristics, and the current development of collagen-type-I-based scaffolds in tissue engineering applications. The advancement of additional novel tissue engineered bioproducts with refined techniques and continuous biomaterial augmentation is facilitated by understanding the conventional design and application of biomaterials based on collagen type I.
Collapse
Affiliation(s)
- Ibrahim N. Amirrah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Izzat Zulkiflee
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - M. F. Mohd Razip Wee
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Antonella Motta
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38122 Trento, Italy
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
5
|
Głąb M, Drabczyk A, Kudłacik-Kramarczyk S, Kędzierska M, Tomala A, Sobczak-Kupiec A, Mierzwiński D, Tyliszczak B. Investigations on the Influence of Collagen Type on Physicochemical Properties of PVP/PVA Composites Enriched with Hydroxyapatite Developed for Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2021; 15:37. [PMID: 35009185 PMCID: PMC8746018 DOI: 10.3390/ma15010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Nowadays, a great attention is directed into development of innovative multifunctional composites which may support bone tissue regeneration. This may be achieved by combining collagen and hydroxyapatite showing bioactivity, osteoconductivity and osteoinductivity with such biocompatible polymers as polyvinylpyrrolidone (PVP) and poly(vinyl alcohol) (PVA). Here PVA/PVP-based composites modified with hydroxyapatite (HAp, 10 wt.%) and collagen (30 wt.%) were obtained via UV radiation while two types of collagen were used (fish and bovine) and crosslinking agents differing in the average molecular weight. Next, their chemical structure was characterized using Fourier transform infrared (FT-IR) spectroscopy, roughness of their surfaces was determined using a stylus contact profilometer while their wettability was evaluated by a sessile drop method followed by the measurements of their surface free energy. Subsequently, swelling properties of composites were verified in simulated physiological liquids as well as the behavior of composites in these liquids by pH measurements. It was proved that collagen-modified composites showed higher swelling ability (even 25% more) compared to unmodified ones, surface roughness, biocompatibility towards simulated physiological liquids and hydrophilicity (contact angles lower than 90°). Considering physicochemical properties of developed materials and a possibility of the preparation of their various shapes and sizes, it may be concluded that developed materials showed great application potential for biomedical use, e.g., as materials filling bone defects supporting their treatments and promoting bone tissue regeneration due to the presence of hydroxyapatite with osteoinductive and osteoconductive properties.
Collapse
Affiliation(s)
- Magdalena Głąb
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (A.T.); (A.S.-K.); (D.M.); (B.T.)
| | - Anna Drabczyk
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (A.T.); (A.S.-K.); (D.M.); (B.T.)
| | - Sonia Kudłacik-Kramarczyk
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (A.T.); (A.S.-K.); (D.M.); (B.T.)
| | - Magdalena Kędzierska
- Department of Chemotherapy, Medical University of Lodz, WWCOiT Copernicus Hospital, 90-001 Lodz, Poland;
| | - Agnieszka Tomala
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (A.T.); (A.S.-K.); (D.M.); (B.T.)
| | - Agnieszka Sobczak-Kupiec
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (A.T.); (A.S.-K.); (D.M.); (B.T.)
| | - Dariusz Mierzwiński
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (A.T.); (A.S.-K.); (D.M.); (B.T.)
| | - Bożena Tyliszczak
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (A.T.); (A.S.-K.); (D.M.); (B.T.)
| |
Collapse
|