1
|
Qiu Y, Chen S, Yu M, Shi J, Liu J, Li X, Chen J, Sun X, Huang G, Zheng C. Natural Products from Marine-Derived Fungi with Anti-Inflammatory Activity. Mar Drugs 2024; 22:433. [PMID: 39452841 PMCID: PMC11509926 DOI: 10.3390/md22100433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Inflammation is considered as one of the most primary protective innate immunity responses, closely related to the body's defense mechanism for responding to chemical, biological infections, or physical injuries. Furthermore, prolonged inflammation is undesirable, playing an important role in the development of various diseases, such as heart disease, diabetes, Alzheimer's disease, atherosclerosis, rheumatoid arthritis, and even certain cancers. Marine-derived fungi represent promising sources of structurally novel bioactive natural products, and have been a focus of research for the development of anti-inflammatory drugs. This review covers secondary metabolites with anti-inflammatory activities from marine-derived fungi, over the period spanning August 2018 to July 2024. A total of 285 anti-inflammatory metabolites, including 156 novel compounds and 11 with novel skeleton structures, are described. Their structures are categorized into five categories: terpenoids, polyketides, nitrogen-containing compounds, steroids, and other classes. The biological targets, as well as the in vitro and in vivo screening models, were surveyed and statistically summarized. This paper aims to offer valuable insights to researchers in the exploration of natural products and the discovery of anti-inflammatory drugs.
Collapse
Affiliation(s)
- Yikang Qiu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (Y.Q.); (S.C.); (M.Y.); (J.S.); (J.L.); (X.L.); (J.C.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Shiji Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (Y.Q.); (S.C.); (M.Y.); (J.S.); (J.L.); (X.L.); (J.C.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Miao Yu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (Y.Q.); (S.C.); (M.Y.); (J.S.); (J.L.); (X.L.); (J.C.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Jueying Shi
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (Y.Q.); (S.C.); (M.Y.); (J.S.); (J.L.); (X.L.); (J.C.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Jiayu Liu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (Y.Q.); (S.C.); (M.Y.); (J.S.); (J.L.); (X.L.); (J.C.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Xiaoyang Li
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (Y.Q.); (S.C.); (M.Y.); (J.S.); (J.L.); (X.L.); (J.C.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Jiaxing Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (Y.Q.); (S.C.); (M.Y.); (J.S.); (J.L.); (X.L.); (J.C.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Xueping Sun
- Key Laboratory of Common Technology of Traditional Chinese Medicine Preparation, College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Guolei Huang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (Y.Q.); (S.C.); (M.Y.); (J.S.); (J.L.); (X.L.); (J.C.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Caijuan Zheng
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (Y.Q.); (S.C.); (M.Y.); (J.S.); (J.L.); (X.L.); (J.C.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| |
Collapse
|
2
|
Yang G, Lin M, Kaliaperumal K, Lu Y, Qi X, Jiang X, Xu X, Gao C, Liu Y, Luo X. Recent Advances in Anti-Inflammatory Compounds from Marine Microorganisms. Mar Drugs 2024; 22:424. [PMID: 39330305 PMCID: PMC11433063 DOI: 10.3390/md22090424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024] Open
Abstract
Marine microbial secondary metabolites with diversified structures have been found as promising sources of anti-inflammatory lead compounds. This review summarizes the sources, chemical structures, and pharmacological properties of anti-inflammatory natural products reported from marine microorganisms in the past three years (2021-2023). Approximately 252 anti-inflammatory compounds, including 129 new ones, were predominantly obtained from marine fungi and they are structurally divided into polyketides (51.2%), terpenoids (21.0%), alkaloids (18.7%), amides or peptides (4.8%), and steroids (4.3%). This review will shed light on the development of marine microbial secondary metabolites as potential anti-inflammatory lead compounds with promising clinical applications in human health.
Collapse
Affiliation(s)
- Guihua Yang
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Miaoping Lin
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Kumaravel Kaliaperumal
- Unit of Biomaterials Research, Department of Orthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India
| | - Yaqi Lu
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xin Qi
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xiaodong Jiang
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xinya Xu
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Chenghai Gao
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yonghong Liu
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xiaowei Luo
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| |
Collapse
|
3
|
Carroll AR, Copp BR, Grkovic T, Keyzers RA, Prinsep MR. Marine natural products. Nat Prod Rep 2024; 41:162-207. [PMID: 38285012 DOI: 10.1039/d3np00061c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Covering: January to the end of December 2022This review covers the literature published in 2022 for marine natural products (MNPs), with 645 citations (633 for the period January to December 2022) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, the submerged parts of mangroves and other intertidal plants. The emphasis is on new compounds (1417 in 384 papers for 2022), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. An analysis of NP structure class diversity in relation to biota source and biome is discussed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia.
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Tanja Grkovic
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, and Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Robert A Keyzers
- Centre for Biodiscovery, and School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
4
|
Jiang M, Wu Q, Guo H, Lu X, Chen S, Liu L, Chen S. Shikimate-Derived Meroterpenoids from the Ascidian-Derived Fungus Amphichorda felina SYSU-MS7908 and Their Anti-Glioma Activity. JOURNAL OF NATURAL PRODUCTS 2023; 86:2651-2660. [PMID: 37967166 DOI: 10.1021/acs.jnatprod.3c00664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Glioma is a clinically heterogeneous type of brain tumor with a poor prognosis. Current treatment approaches have limited effectiveness in treating glioma, highlighting the need for novel drugs. One approach is to explore marine natural products for their therapeutic potential. In this study, we isolated nine shikimate-derived diisoprenyl-cyclohexene/ane-type meroterpenoids (1-9), including four new ones, amphicordins A-D (1-4) from the ascidian-derived fungus Amphichorda felina SYSU-MS7908, and further semisynthesized four derivatives (10-13). Their structures were extensively characterized using 1D and 2D NMR, modified Mosher's method, HR-ESIMS, NMR and ECD calculations, and X-ray crystallography. Notably, amphicordin C (3) possesses a unique benzo[g]chromene (6/6/6) skeleton in this meroterpenoid family. In an anti-glioma assay, oxirapentyn A (7) effectively inhibited the proliferation, migration, and invasion of glioma cells and induced their apoptosis. Furthermore, an in silico analysis suggested that oxirapentyn A has the potential to penetrate the blood-brain barrier. These findings highlight the potential of oxirapentyn A as a candidate for the development of novel anti-glioma drugs.
Collapse
Affiliation(s)
- Minghua Jiang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China
- Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Qilin Wu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China
| | - Heng Guo
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China
| | - Xin Lu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China
| | - Shuihao Chen
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China
| | - Lan Liu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China
- Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai 519000, China
| | - Senhua Chen
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China
- Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| |
Collapse
|
5
|
Guo TT, Zhang ML, Sun ZC, Zhang LM, Xu XD, Hu BH. Three new triterpenoid glycosides from Aronia melanocarpa (Michx.) Elliott. Nat Prod Res 2023; 37:3572-3579. [PMID: 35762388 DOI: 10.1080/14786419.2022.2092863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 10/17/2022]
Abstract
Three new triterpenoid glycosides, 2α,3α,23,24-tetrahydroxyurs-12,19- dien-oic acid 28-O-β- D -glucopyranoside (1), 2α,3β,23,24-tetrahydroxyurs-12, 19(29) -dien-28-oic acid 28-O-β- D -glucopyranoside (2), and 2α,3β,23,24-tetrahydroxyurs-12, 18-dien-28-oic acid 28-O-β- D -glucopyranoside (3) were isolated from Aronia melanocarpa (Michx.) Elliott. Their structures were elucidated by extensive spectroscopic methods. All the isolated compounds displayed moderate inhibitory activity against nitric oxide production in macrophages.
Collapse
Affiliation(s)
- Ting-Ting Guo
- Guozhen Health Technology (Beijing) Co., Ltd, Beijing, P. R. China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Man-Li Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Zhao-Cui Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Li-Mei Zhang
- Guozhen Health Technology (Beijing) Co., Ltd, Beijing, P. R. China
| | - Xu-Dong Xu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Bi-Huang Hu
- School of Life and Pharmaceutical Sciences, Hainan University, Haikou, Hainan Province, China
| |
Collapse
|
6
|
Epigenetic Manipulation Induced Production of Immunosuppressive Chromones and Cytochalasins from the Mangrove Endophytic Fungus Phomopsis asparagi DHS-48. Mar Drugs 2022; 20:md20100616. [PMID: 36286441 PMCID: PMC9605342 DOI: 10.3390/md20100616] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
A mangrove endophytic fungus Phomopsis asparagi DHS-48 was found to be particularly productive with regard to the accumulation of substantial new compounds in our previous study. In order to explore its potential to produce more unobserved secondary metabolites, epigenetic manipulation was used on this fungus to activate cryptic or silent genes by using the histone deacetylase (HDAC) inhibitor sodium butyrate and the DNA methyltransferase (DNMT) inhibitor 5-azacytidine (5-Aza). Based on colony growth, dry biomass, HPLC, and 1H NMR analyses, the fungal chemical diversity profile was significantly changed compared with the control. Two new compounds, named phaseolorin J (1) and phomoparagin D (5), along with three known chromones (2–4) and six known cytochalasins (6–11), were isolated from the culture treated with sodium butyrate. Their structures, including their absolute configurations, were elucidated using a combination of detailed HRESIMS, NMR, and ECD and 13C NMR calculations. The immunosuppressive and cytotoxic activities of all isolated compounds were evaluated. Compounds 1 and 8 moderately inhibited the proliferation of ConA (concanavalin A)-induced T and LPS (lipopolysaccharide)-induced B murine spleen lymphocytes. Compound 5 exhibited significant in vitro cytotoxicity against the tested human cancer cell lines Hela and HepG2, which was comparative to the positive control adriamycin and fluorouracil. Our finding demonstrated that epigenetic manipulation should be an efficient strategy for the induction of new metabolites from mangrove endophytic fungi.
Collapse
|
7
|
Zhai G, Chen S, Shen H, Guo H, Jiang M, Liu L. Bioactive Monoterpenes and Polyketides from the Ascidian-Derived Fungus Diaporthe sp. SYSU-MS4722. Mar Drugs 2022; 20:553. [PMID: 36135742 PMCID: PMC9504586 DOI: 10.3390/md20090553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/21/2022] Open
Abstract
There has been a tremendous increase in the rate of new terpenoids from marine-derived fungi being discovered, while new monoterpenes were rarely isolated from marine-derived fungi in the past two decades. Three new monoterpenes, diaporterpenes A-C (1-3), and one new α-pyrones, diaporpyrone A (6), along with nine known polyketides 4, 5, and 7-13 were isolated from the ascidian-derived fungus Diaporthe sp. SYSU-MS4722. Their planar structures were elucidated based on extensive spectroscopic analyses (1D and 2D NMR and HR-ESIMS). The absolute configurations of 1 and 3 were identified by an X-ray crystallographic diffraction experiment using Cu-Ka radiation, and those of compound 2 were assigned by calculating NMR chemical shifts and ECD spectra. It afforded an example of natural epimers with different physical properties, especially crystallization, due to the difference in intermolecular hydrogen bonding. Compounds 9, 10, and 13 showed moderate total antioxidant capacity (0.82 of 9; 0.70 of 10; 0.48 of 13) with Trolox (total antioxidant capacity: 1.0) as a positive control, and compounds 5 and 7 showed anti-inflammatory activity with IC50 values of 35.4 and 40.8 µM, respectively (positive control indomethacin: IC50 = 35.8 µM).
Collapse
Affiliation(s)
- Guifa Zhai
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China
- School of Medicine, Shenzhen Campus, Sun Yat-Sen University, Shenzhen 518107, China
| | - Senhua Chen
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
| | - Hongjie Shen
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
| | - Heng Guo
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China
| | - Minghua Jiang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
| | - Lan Liu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
- Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai 519082, China
| |
Collapse
|
8
|
Jiang M, Guo H, Wu Q, Yuan S, Liu L. Two New Picoline-Derived Meroterpenoids with Anti-Acetylcholinesterase Activity from Ascidian-Derived Fungus Amphichorda felina. Molecules 2022; 27:5076. [PMID: 36014315 PMCID: PMC9416303 DOI: 10.3390/molecules27165076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022] Open
Abstract
Amphichoterpenoids D (1) and E (2), two new picoline-derived meroterpenoids with a rare 6/6/6 tricyclic pyrano[3,2-c]pyridinyl-γ-pyranone scaffold, were isolated from the ascidian-derived fungus Amphichorda felina SYSU-MS7908. Their structures, including the absolute configurations, were established by extensive spectroscopic methods (1D and 2D NMR and high-resolution mass spectrometry) and ECD calculations. Compounds 1 and 2 showed anti-acetylcholinesterase (anti-AChE) activities with IC50 values of 12.5 μM and 11.6 μM, respectively. The binding interactions between 1, 2, and AChE were investigated using molecular docking analyses.
Collapse
Affiliation(s)
- Minghua Jiang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Heng Guo
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Qilin Wu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Siwen Yuan
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Lan Liu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai 519082, China
| |
Collapse
|