1
|
Zhang M, Wang Z, Su Y, Yan W, Ouyang Y, Fan Y, Huang Y, Yang H. TDP1 represents a promising therapeutic target for overcoming tumor resistance to chemotherapeutic agents: progress and potential. Bioorg Chem 2025; 154:108072. [PMID: 39705934 DOI: 10.1016/j.bioorg.2024.108072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 12/08/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Tyrosyl-DNA phosphodiesterase 1 (TDP1) is an enzyme that plays a crucial role in repairing DNA lesions caused by the entrapment of DNA topoisomerase IB (TOP1)-DNA break-associated crosslinks. TDP1 inhibitors exhibit synergistic effects with TOP1 inhibitors in cancer cells, effectively overcoming resistance to TOP1 inhibitors. Therefore, this approach presents a promising strategy for reversing tumor resistance to TOP1 inhibitors. This review comprehensively outlines the structural and biological features of TDP1, the substrates involved in its catalytic hydrolysis, and its potential as a therapeutic target in oncology. Additionally, we summarize the various screening methods used to identify TDP1 inhibitors, alongside the latest advancements in TDP1 inhibitor research.
Collapse
Affiliation(s)
- Meimei Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China
| | - Ziqiang Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China
| | - Yan Su
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China
| | - Wenbo Yan
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China
| | - Yifan Ouyang
- Fujian Key Laboratory of Toxicant and Drug Toxicology, School of Medicine, Ningde Normal University, Ningde, Fujian 352100, People's Republic of China.
| | - Yanru Fan
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area Ministry of Education, Ningxia Medical University, Yinchuan 750004, PR China; Collaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Ningxia Characteristic Traditional Chinese Medicine Modern Engineering and Technique Research Center, Ningxia Key Laboratory of Drug Development and Generic Drug Research, Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Yinchuan 750004, PR China.
| | - Yu Huang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area Ministry of Education, Ningxia Medical University, Yinchuan 750004, PR China; Collaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Ningxia Characteristic Traditional Chinese Medicine Modern Engineering and Technique Research Center, Ningxia Key Laboratory of Drug Development and Generic Drug Research, Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Yinchuan 750004, PR China.
| | - Hao Yang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area Ministry of Education, Ningxia Medical University, Yinchuan 750004, PR China; Collaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Ningxia Characteristic Traditional Chinese Medicine Modern Engineering and Technique Research Center, Ningxia Key Laboratory of Drug Development and Generic Drug Research, Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Yinchuan 750004, PR China.
| |
Collapse
|
2
|
Wei J, Chen X, Ma Y, Wu B. Chevalierlin: A spirocyclic alkaloid from a hydrothermal vent associated fungus Aspergillus chevalieri TW132-65. PHYTOCHEMISTRY 2025; 229:114295. [PMID: 39368769 DOI: 10.1016/j.phytochem.2024.114295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
A previously undescribed spirodiketopiperazine-indole alkaloid, chevalierlin (1), two pairs of previously undescribed dihydroisocoumarin enantiomers eurotiumides H-I (2-3), as well as six related known compounds (4-9) were isolated from the culture of a hydrothermal vent associated fungus Aspergillus chevalieri TW132-65. Their structures were unambiguously determined by NMR, mass spectrometry, and ECD calculations. Chevalierlin (1) exhibits moderate cytotoxic activities with IC50 values of 6.20 ± 0.05 μM and 7.68 ± 0.01 μM against Namalwa and Raji cell lines.
Collapse
Affiliation(s)
- Jihua Wei
- Ocean College, Zhejiang University, Zhoushan, 316021, China; Proya Cosmetics Co., Ltd., Hangzhou, 321000, China
| | - Xuexia Chen
- Ocean College, Zhejiang University, Zhoushan, 316021, China
| | - Yihan Ma
- Ocean College, Zhejiang University, Zhoushan, 316021, China
| | - Bin Wu
- Ocean College, Zhejiang University, Zhoushan, 316021, China.
| |
Collapse
|
3
|
Zhao XZ, Barakat IA, Lountos GT, Wang W, Agama K, Mahmud MRA, Suazo KF, Andresson T, Pommier Y, Burke TR. Targeted sulfur(VI) fluoride exchange-mediated covalent modification of a tyrosine residue in the catalytic pocket of tyrosyl-DNA phosphodiesterase 1. Commun Chem 2024; 7:208. [PMID: 39284936 PMCID: PMC11405833 DOI: 10.1038/s42004-024-01298-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024] Open
Abstract
Developing effective inhibitors of the DNA repair enzyme tyrosyl-DNA phosphodiesterase 1 (TDP1) has been challenging because of the enzyme shallow catalytic pocket and non-specific substrate binding interactions. Recently, we discovered a quinolone-binding hot spot in TDP1's active site proximal to the evolutionary conserved Y204 and F259 residues that position DNA. Sulfur (VI) fluoride exchange (SuFEx) is a biocompatible click chemistry reaction that enables acylation of protein residues, including tyrosine. Selective protein modifications can provide insights into the biological roles of proteins and inform ligand design. As we report herein, we used SuFEx chemistries to prepare covalent TDP1-bound binders showing site-specific covalent bonds with Y204. Our work presents the first application of SuFEx chemistries to TDP1 ligands. It validates the ability to covalently modify specific TDP1 residues by designed targeting and adds to the chemical biology resource toolbox for studying TDP1.
Collapse
Affiliation(s)
- Xue Zhi Zhao
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA.
| | - Idris A Barakat
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - George T Lountos
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Wenjie Wang
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Keli Agama
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Md Rasel Al Mahmud
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kiall F Suazo
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Thorkell Andresson
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Yves Pommier
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Terrence R Burke
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| |
Collapse
|
4
|
He YP, Zhang ZK, Li ZJ, Wu PP, Hu JS, Fan H, Zhang CX. Two new types of structures from soft coral-associated epiphytic fungus Aspergillus versicolor CGF9-1-2. Fitoterapia 2024; 177:106136. [PMID: 39053744 DOI: 10.1016/j.fitote.2024.106136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/12/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Global Natural Products Social (GNPS) molecular networking platform was applied to discovery the undescribed compounds from the common marine fungi Aspergillus versicolor CGF9-1-2, ultimately resulting in isolation of four new polyketides, decumbenone E (1), decumbenone F (2), 2'-epi-8-O-methylnidurufin (6), (-)-phomoindene A (7), one new nucleoside, 3-methyl-9-(2-methylbutene)-xanthine (8), and five known analogues. Their structures were elucidated based on 1D/2D NMR spectroscopic and HRESIMS data analyses, meanwhile, the absolute configurations of new compounds were established based on the X-ray crystallographic experiments, as well as the electronic circular dichroism (ECD) analysis. All compounds were predicted pharmaceutical chemistry with ten commonly disease-related proteins by molecular docking. In addition, all compounds against TDP1 were performed in vitro, which was consistent with the docking result, and compound 6 shown a weak inhibitory activity.
Collapse
Affiliation(s)
- Yu-Pei He
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Ze-Kun Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Ze-Jun Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Ping-Ping Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Jin-Shan Hu
- The First Compulsory Isolated Detoxification Center of Shenzhen Municipal Bureau of Justice, Shenzhen 518024, PR China
| | - Hao Fan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Cui-Xian Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.
| |
Collapse
|
5
|
Fan H, Shao XH, Zhang ZK, Ni C, Feng C, Wei X, Zhu JQ, Li XH, Zhang CX. Penicilloneines A and B, Quinolone-Citrinin Hybrids from a Starfish-Derived Penicillium sp. JOURNAL OF NATURAL PRODUCTS 2024; 87:705-712. [PMID: 38547118 DOI: 10.1021/acs.jnatprod.3c00765] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Penicilloneines A (1) and B (2) are the first reported quinolone-citrinin hybrids. They were isolated from the starfish-derived fungus Penicillium sp. GGF16-1-2, and their structures were elucidated using spectroscopic, chemical, computational, and single-crystal X-ray diffraction methods. Penicilloneines A (1) and B (2) share a common 4-hydroxy-1-methyl-2(1H)-quinolone unit; however, they differ in terms of citrinin moieties, and these two units are linked via a methylene bridge. Penicilloneines A (1) and B (2) exhibited antifungal activities against Colletotrichum gloeosporioides, with lethal concentration 50 values of 0.02 and 1.51 μg/mL, respectively. A mechanistic study revealed that 1 could inhibit cell growth and promote cell vacuolization and consequent disruption of the fungal cell walls via upregulating nutrient-related hydrolase genes, including putative hydrolase, acetylcholinesterase, glycosyl hydrolase, leucine aminopeptidase, lipase, and beta-galactosidase, and downregulating their synthase genes 3-carboxymuconate cyclase, pyruvate decarboxylase, phosphoketolase, and oxalate decarboxylase.
Collapse
Affiliation(s)
- Hao Fan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Xue-Hua Shao
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, Guangdong, People's Republic of China
| | - Ze-Kun Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Chen Ni
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Chan Feng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Xia Wei
- Pharmaceutical College, Guangxi Medicinal University, Nanning 530021, People's Republic of China
| | - Jia-Qi Zhu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Xiao-Hui Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Cui-Xian Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| |
Collapse
|
6
|
Carroll AR, Copp BR, Grkovic T, Keyzers RA, Prinsep MR. Marine natural products. Nat Prod Rep 2024; 41:162-207. [PMID: 38285012 DOI: 10.1039/d3np00061c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Covering: January to the end of December 2022This review covers the literature published in 2022 for marine natural products (MNPs), with 645 citations (633 for the period January to December 2022) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, the submerged parts of mangroves and other intertidal plants. The emphasis is on new compounds (1417 in 384 papers for 2022), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. An analysis of NP structure class diversity in relation to biota source and biome is discussed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia.
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Tanja Grkovic
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, and Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Robert A Keyzers
- Centre for Biodiscovery, and School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
7
|
Hu JS, He YP, Zhou FG, Wu PP, Chen LY, Ni C, Zhang ZK, Xiao XJ, An LK, He XX, Zhang CX. New Indole Diketopiperazine Alkaloids from Soft Coral-Associated Epiphytic Fungus Aspergillus versicolor CGF 9-1-2. Chem Biodivers 2023; 20:e202300301. [PMID: 37097072 DOI: 10.1002/cbdv.202300301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/23/2023] [Accepted: 04/23/2023] [Indexed: 04/26/2023]
Abstract
Two new indole diketopiperazine alkaloids (IDAs), (+)19-epi-sclerotiamide (1) and (-)19-epi-sclerotiamide (2), along with 13 known analogs (3-15), were isolated from a soft coral-associated epiphytic fungus Aspergillus versicolor CGF 9-1-2. The structures of two new compounds were established based on the combination of HR-ESI-MS, 1D and 2D NMR spectroscopy, optical rotation measurements and quantum chemical 13 C-NMR, the absolute configurations were determined by experimental and electronic circular dichroism (ECD) calculations. The results of molecular docking showed that all the compounds had a good binding with TDP1, TDP2, TOP1, TOP2, Ache, NLRP3, EGFR, EGFR L858R, EGFR T790M and EGFR T790/L858. Biological evaluation of compounds 3, 6, 8, 11 showed that 3 exerted a strong inhibitory effect on TDP2 with a rate of 81.72 %.
Collapse
Affiliation(s)
- Jin-Shan Hu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
- The First Compulsory Isolated Detoxification Center of Shenzhen, Municipal Bureau of Justice, Shenzhen, 518024, P. R. China
| | - Yu-Pei He
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| | - Feng-Guo Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| | - Ping-Ping Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| | - Le-Yi Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| | - Cheng Ni
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| | - Ze-Kun Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| | - Xi-Ji Xiao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| | - Lin-Kun An
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Xi-Xin He
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| | - Cui-Xian Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| |
Collapse
|
8
|
Yang H, Qin C, Wu M, Wang FT, Wang W, Agama K, Pommier Y, Hu DX, An LK. Synthesis and Biological Activities of 11- and 12-Substituted Benzophenanthridinone Derivatives as DNA Topoisomerase IB and Tyrosyl-DNA Phosphodiesterase 1 Inhibitors. ChemMedChem 2023; 18:e202200593. [PMID: 36932053 PMCID: PMC10233710 DOI: 10.1002/cmdc.202200593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/06/2023] [Indexed: 03/19/2023]
Abstract
Herein, a series of 11- or 12-substituted benzophenanthridinone derivatives was designed and synthesized for the discovery of dual topoisomerase IB (TOP1) and tyrosyl-DNA phosphodiesterase 1 (TDP1) inhibitors. Enzyme-based assays indicated that two compounds 12 and 38 showed high TOP1 inhibitory potency (+++), and four compounds 35, 37, 39 and 43 showed good TDP1 inhibition with IC50 values ranging from 10 to 18 μM. 38 could induce cellular TOP1cc formation, resulting in the highest cytotoxicity against HCT-116 cells (0.25 μM). The most potent TDP1 inhibitor 43 (10 μM) could induce cellular TDP1cc formation and enhance topotecan-induced DNA damage and showed strong synergistic cytotoxicity with topotecan in both MCF-7 and MCF-7/TDP1 cells.
Collapse
Affiliation(s)
- Hao Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, P. R. China
| | - Chao Qin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Min Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Fang-Ting Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Wenjie Wang
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Keli Agama
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yves Pommier
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - De-Xuan Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Lin-Kun An
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
9
|
Zakharenko AL, Luzina OA, Chepanova AA, Dyrkheeva NS, Salakhutdinov NF, Lavrik OI. Natural Products and Their Derivatives as Inhibitors of the DNA Repair Enzyme Tyrosyl-DNA Phosphodiesterase 1. Int J Mol Sci 2023; 24:5781. [PMID: 36982848 PMCID: PMC10051138 DOI: 10.3390/ijms24065781] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/22/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Tyrosyl-DNA phosphodiesterase 1 (TDP1) is an important repair enzyme that removes various covalent adducts from the 3' end of DNA. Particularly, covalent complexes of topoisomerase 1 (TOP1) with DNA stabilized by DNA damage or by various chemical agents are an examples of such adducts. Anticancer drugs such as the TOP1 poisons topotecan and irinotecan are responsible for the stabilization of these complexes. TDP1 neutralizes the effect of these anticancer drugs, eliminating the DNA adducts. Therefore, the inhibition of TDP1 can sensitize tumor cells to the action of TOP1 poisons. This review contains information about methods for determining the TDP1 activity, as well as describing the inhibitors of these enzyme derivatives of natural biologically active substances, such as aminoglycosides, nucleosides, polyphenolic compounds, and terpenoids. Data on the efficiency of combined inhibition of TOP1 and TDP1 in vitro and in vivo are presented.
Collapse
Affiliation(s)
- Alexandra L. Zakharenko
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8, Akademika Lavrentieva Ave., Novosibirsk 630090, Russia
| | - Olga A. Luzina
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., Novosibirsk 630090, Russia
| | - Arina A. Chepanova
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8, Akademika Lavrentieva Ave., Novosibirsk 630090, Russia
| | - Nadezhda S. Dyrkheeva
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8, Akademika Lavrentieva Ave., Novosibirsk 630090, Russia
| | - Nariman F. Salakhutdinov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., Novosibirsk 630090, Russia
| | - Olga I. Lavrik
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8, Akademika Lavrentieva Ave., Novosibirsk 630090, Russia
| |
Collapse
|
10
|
Rare Carbon-Bridged Citrinin Dimers from the Starfish-Derived Symbiotic Fungus Penicillium sp. GGF16-1-2. Mar Drugs 2022; 20:md20070443. [PMID: 35877736 PMCID: PMC9317178 DOI: 10.3390/md20070443] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022] Open
Abstract
Four novel, rare carbon-bridged citrinin dimers, namely dicitrinones G–J (1–4), and five known analogs (5–9) were isolated from the starfish-derived fungus Penicillium sp. GGF 16-1-2. Their structures were elucidated by extensive spectroscopic analysis and quantum chemical calculations. Compounds 1–9 exhibited strong antifungal activities against Colletotrichum gloeosporioides with LD50 values from 0.61 μg/mL to 16.14 μg/mL. Meanwhile, all compounds were evaluated for their cytotoxic activities against human pancreatic cancer BXPC-3 and PANC-1 cell lines; as a result, compound 1 showed more significant cytotoxicities than the positive control against both cell lines. In addition, based on the analyses of the protein-protein interaction (PPI) network and Western blot, 1 could induce apoptosis by activating caspase 3 proteins (CASP3).
Collapse
|
11
|
Adamantane-Monoterpenoid Conjugates Linked via Heterocyclic Linkers Enhance the Cytotoxic Effect of Topotecan. Molecules 2022; 27:molecules27113374. [PMID: 35684313 PMCID: PMC9182348 DOI: 10.3390/molecules27113374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/15/2022] [Accepted: 05/22/2022] [Indexed: 01/01/2023] Open
Abstract
Inhibiting tyrosyl-DNA phosphodiesterase 1 (TDP1) is a promising strategy for increasing the effectiveness of existing antitumor therapy since it can remove the DNA lesions caused by anticancer drugs, which form covalent complexes with topoisomerase 1 (TOP1). Here, new adamantane-monoterpene conjugates with a 1,2,4-triazole or 1,3,4-thiadiazole linker core were synthesized, where (+)-and (-)-campholenic and (+)-camphor derivatives were used as monoterpene fragments. The campholenic derivatives 14a-14b and 15a-b showed activity against TDP1 at a low micromolar range with IC50 ~5-6 μM, whereas camphor-containing compounds 16 and 17 were ineffective. Surprisingly, all the compounds synthesized demonstrated a clear synergy with topotecan, a TOP1 poison, regardless of their ability to inhibit TDP1. These findings imply that different pathways of enhancing topotecan toxicity other than the inhibition of TDP1 can be realized.
Collapse
|