1
|
Jeevanandam J, Gonçalves M, Castro R, Gallo J, Bañobre-López M, Rodrigues J. Stabilization of metal-doped magnesium oxide nanoparticles with PAMAM dendrimers to improve alpha-amylase enzyme inhibition. Mater Today Bio 2025; 31:101520. [PMID: 39974818 PMCID: PMC11835657 DOI: 10.1016/j.mtbio.2025.101520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 01/09/2025] [Accepted: 01/22/2025] [Indexed: 02/21/2025] Open
Abstract
The present study aimed to synthesize metal-doped magnesium oxide (MgO) nanoparticles to drastically reduce polydispersity and stabilize them with generation 5 of poly(amidoamine) (G5 PAMAM) dendrimers to assess their antidiabetic properties via controlled release. Zinc and silver metals were selected as dopants due to their ionic radius (0.74 Å and 1.16 Å, respectively) for MgO crystal defect reduction (ionic radii - 0.72 Å), allowing for the comparison of the dopants' effect on the nanoparticles' properties. Later, the resultant nanoparticles were formulated into G5 PAMAM dendrimers, and their amylase inhibition was evaluated and compared with that of non-formulated samples. The results showed that the addition of dopants led to smaller, more stable, and slightly monodispersed spherical, hexagonal, and elongated hexagonal/rod-shaped MgO nanoparticles. The smaller size (∼11-72 nm), surface charge (ca. 17-24 mV), crystallite size ranging from 9.07 nm (Zn-doped MgO) to 17.44 nm (Ag-doped MgO), and distinct shapes have led to enhanced stabilization via G5 dendrimer. Notably, unlike other shapes, spherical nanoparticles were highly stabilized by dendrimers because of the absence of edged atoms. Amylase inhibition assay revealed that dendrimer-stabilized zinc-doped MgO nanoparticles exhibited enhanced inhibitory activity (82.9 %) at 0 h, which decreased to 66.6 % after 24 h, indicating controlled nanoparticle release by the dendrimer. Therefore, this study confirmed the significant role of dendrimer-stabilized metal-doped MgO nanoparticles in enhancing their ability to inhibit enzymes in a controlled manner. These findings led to a novel mechanism that has not been proposed in previous studies.
Collapse
Affiliation(s)
- Jaison Jeevanandam
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Mara Gonçalves
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Rita Castro
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Juan Gallo
- Advanced (magnetic) Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory (INL), Braga, 4715-330, Portugal
| | - Manuel Bañobre-López
- Advanced (magnetic) Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory (INL), Braga, 4715-330, Portugal
| | - João Rodrigues
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| |
Collapse
|
2
|
Yan X, Fan F, Qin Z, Zhang L, Guan S, Han S, Dong X, Chen H, Xu Z, Li T. Preparation and Characterization of Calcium-Chelated Sea Cucumber Ovum Hydrolysate and the Inhibitory Effect on α-Amylase. Foods 2024; 13:4119. [PMID: 39767061 PMCID: PMC11675376 DOI: 10.3390/foods13244119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
α-amylase can effectively inhibit the activity of digestive enzymes and alter nutrient absorption. The impact of ovum hydrolysates of sea cucumbers on α-amylase activity was investigated in this study. The protein hydrolysates generated using different proteases (pepsin, trypsin, and neutral protease) and molecular weights (less than 3000 and more than 3000) were investigated. The results showed that all three different hydrolysates demonstrated calcium-chelating activity and induced a fluorescence-quenching effect on α-amylase. The sea cucumber ovum hydrolysate with a molecular weight of less than 3000 Da, isolated using trypsin, showed the most effective inhibitory effect on α-amylase, with an inhibition rate of 53.9%, and the inhibition type was identified as mixed forms of inhibition. In conclusion, the generation and utilization of protein hydrolysates from sea cucumber ovum as a functional food ingredient could be a potential approach to add value to low-cost seafood by-products.
Collapse
Affiliation(s)
- Xu Yan
- Key Laboratory of Biotechnology and Bioresources Utilization, College of Life Sciences, Dalian Minzu University, Ministry of Education, Dalian 116600, China; (X.Y.); (L.Z.); (S.G.); (S.H.)
| | - Fengjiao Fan
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China;
| | - Zijin Qin
- Department of Food Science and Technology, The University of Georgia, Athens, GA 30602, USA;
| | - Lijuan Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization, College of Life Sciences, Dalian Minzu University, Ministry of Education, Dalian 116600, China; (X.Y.); (L.Z.); (S.G.); (S.H.)
| | - Shuang Guan
- Key Laboratory of Biotechnology and Bioresources Utilization, College of Life Sciences, Dalian Minzu University, Ministry of Education, Dalian 116600, China; (X.Y.); (L.Z.); (S.G.); (S.H.)
| | - Shiying Han
- Key Laboratory of Biotechnology and Bioresources Utilization, College of Life Sciences, Dalian Minzu University, Ministry of Education, Dalian 116600, China; (X.Y.); (L.Z.); (S.G.); (S.H.)
| | - Xiufang Dong
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China;
| | - Hui Chen
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China;
| | - Zhe Xu
- Key Laboratory of Biotechnology and Bioresources Utilization, College of Life Sciences, Dalian Minzu University, Ministry of Education, Dalian 116600, China; (X.Y.); (L.Z.); (S.G.); (S.H.)
| | - Tingting Li
- Key Laboratory of Biotechnology and Bioresources Utilization, College of Life Sciences, Dalian Minzu University, Ministry of Education, Dalian 116600, China; (X.Y.); (L.Z.); (S.G.); (S.H.)
| |
Collapse
|
3
|
Halim SA, Lodhi HW, Waqas M, Khalid A, Abdalla AN, Khan A, Al-Harrasi A. Targeting α-amylase enzyme through multi-fold structure-based virtual screening and molecular dynamic simulation. J Biomol Struct Dyn 2024; 42:5617-5630. [PMID: 37378513 DOI: 10.1080/07391102.2023.2227721] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023]
Abstract
α-Amylase play important role in hydrolyses of α-bonds of large α-linked polysaccharides; thus, it is a potential drug target in diabetes mellites (DM) and its inhibition is one of the therapeutic strategies in DM. With the aim to discover novel and safer therapeutic molecules to combat diabetes, a huge dataset of ∼0.69 billion compounds from ZINC20 database were screened against α-amylase using multi-fold structure-based virtual screening protocol. Based on receptor-based pharmacophore model, docking results, pharmacokinetic profile, molecular interactions with α-amylase, several compounds were retrieved as lead candidates to be further scrutinized in the in vitro assay and in vivo animal testing. Among the selected hits, CP26 exhibited the highest binding free energy in MMGB-SA analysis, followed by CP7 and CP9, which is higher than the binding free energy of acarbose. While CP20 and CP21 showed comparative binding free energy to acarbose. All the selected ligands showed acceptable binding energy range, therefore, several molecules with enhanced efficacy can be designed by derivatizing these molecules. The in-silico results indicates that the selected molecules could serve as potential selective α-amylase inhibitors and can be used for the treatment of diabetes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | | | - Muhammad Waqas
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan, Saudi Arabia
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| |
Collapse
|
4
|
Jiang H, Kong L, Tang H, Wang Z, Liu C, Zhang J, Chen Y, Shen J, Zhou Y. Study on the preparation and enzyme inhibitory activity of polyphenols from Sargassum pallidum. PLoS One 2024; 19:e0297434. [PMID: 38289914 PMCID: PMC10826943 DOI: 10.1371/journal.pone.0297434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
This study aimed to obtain a high yield and purity of Sargassum pallidum polyphenol extracts (SPPE) and study its enzyme activity. Fresh Sargassum pallidum seaweed was selected for optimization of ultrasound-assisted extraction (UAE) conditions and purification conditions using macroporous resin and Sephadex LH20 to obtain SPPE. The SPPE was characterized using UPLC-QTOF-MS/MS and α-amylase, α-glucosidase, tyrosinase, and AchE inhibitory activity were determined. The maximum extraction rate of SPPE was 7.56 mg GAE/g and the polyphenol purity reached 70.5% after macroporous resin and Sephadex LH-20 purification. A total of 50 compounds were identified by UPLC-QTOF-MS/MS. The IC50 values of SPPE were 334.9 μg/mL, 6.290 μg /mL, 0.834 mg /mL and 0.6538 mg /mL for α-amylase, α-glucosidase, tyrosinase and AchE, respectively. Molecular docking technology further revealed the effects of SPPE on the above enzymes. This study provided information on the potential hypoglycemic, whitening and anti-Alzheimer's disease biological activities of SPPE, which had guiding significance for the purification and development of other seaweed polyphenols.
Collapse
Affiliation(s)
- Haiyun Jiang
- Department of Pharmacy, Jiangsu Ocean University, Lianyungang, Jiangsu, China
| | - Li Kong
- Department of Pharmacy, Jiangsu Ocean University, Lianyungang, Jiangsu, China
| | - Hongguang Tang
- Department of Pharmacy, Jiangsu Ocean University, Lianyungang, Jiangsu, China
| | - Zhenzhen Wang
- Department of Pharmacy, Jiangsu Ocean University, Lianyungang, Jiangsu, China
| | - Caiping Liu
- Department of Pharmacy, Jiangsu Ocean University, Lianyungang, Jiangsu, China
| | - Jianhui Zhang
- Department of Pharmacy, Jiangsu Ocean University, Lianyungang, Jiangsu, China
| | - Yuxin Chen
- Department of Pharmacy, Jiangsu Ocean University, Lianyungang, Jiangsu, China
| | - Jinyang Shen
- Department of Pharmacy, Jiangsu Ocean University, Lianyungang, Jiangsu, China
| | - Yue Zhou
- Department of Pharmacy, Lianyungang Hospital of Traditional Chinese Medicine, Lianyungang, Jiangsu, China
| |
Collapse
|
5
|
Jeevanandam J, Gonçalves M, Castro R, Gallo J, Bañobre-López M, Rodrigues J. Enhanced alpha-amylase inhibition activity of amine-terminated PAMAM dendrimer stabilized pure copper-doped magnesium oxide nanoparticles. BIOMATERIALS ADVANCES 2023; 153:213535. [PMID: 37385162 DOI: 10.1016/j.bioadv.2023.213535] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
The present work aims to prepare copper-doped MgO nanoparticles via a sol-gel approach and study their antidiabetic alpha-amylase inhibition activity with undoped MgO nanoparticles. The ability of G5 amine-terminated polyamidoamine (PAMAM) dendrimer for the controlled release of copper-doped MgO nanoparticles to exhibit alpha-amylase inhibition activity was also evaluated. The synthesis of MgO nanoparticles via sol-gel approach and optimization of calcination temperature and time has led to the formation of nanoparticles with different shapes (spherical, hexagonal, and rod-shaped) and a polydispersity in size ranging from 10 to 100 nm with periclase crystalline phase. The presence of copper ions in the MgO nanoparticles has altered their crystallite size, eventually modifying their size, morphology, and surface charge. The efficiency of dendrimer to stabilize spherical copper-doped MgO nanoparticles (ca. 30 %) is higher than in other samples, which was confirmed by UV-Visible, DLS, FTIR, and TEM analysis. The amylase inhibition assay emphasized that the dendrimer nanoparticles stabilization has led to the prolonged enzyme inhibition ability of MgO and copper-doped MgO nanoparticles for up to 24 h.
Collapse
Affiliation(s)
- Jaison Jeevanandam
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Mara Gonçalves
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Rita Castro
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Juan Gallo
- Advanced (magnetic) theranostic nanostructures lab (AmTheNa), Nanomedicine group, International Iberian Nanotechnology Laboratory (INL), Braga 4715-330, Portugal
| | - Manuel Bañobre-López
- Advanced (magnetic) theranostic nanostructures lab (AmTheNa), Nanomedicine group, International Iberian Nanotechnology Laboratory (INL), Braga 4715-330, Portugal
| | - João Rodrigues
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal; School of Materials Science and Engineering, Center for Nano Energy Materials, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
6
|
Utilization of Fishery-Processing By-Product Squid Pens for Scale-Up Production of Phenazines via Microbial Conversion and Its Novel Potential Antinematode Effect. FISHES 2022. [DOI: 10.3390/fishes7030113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Fishery by-products (FBPs) have been increasingly investigated for the extraction and production of a vast array of active molecules. The aim of this study was to produce phenazine compounds from FBPs via microbial fermentation and assess their novel antinematode effect. Among various FBPs, squid pen powder (SPP) was discovered as the most suitable substrate for phenazine production by Pseudomonas aeruginosa TUN03 fermentation. Various small-scale experiments conducted in flasks for phenazine production indicated that the most suitable was the newly designed liquid medium which included 1% SPP, 0.05% MgSO4, and 0.1% Ca3(PO4)2 (initial pH 7). Phenazines were further studied for scale-up bioproduction in a 14 L bioreactor system resulting in a high yield (22.73 µg/mL) in a much shorter cultivation time (12 h). In the fermented culture broth, hemi-pyocyanin (HPC) was detected as a major phenazine compound with an area percentage of 11.28% in the crude sample. In the bioactivity tests, crude phenazines and HPC demonstrate novel potential nematicidal activity against black pepper nematodes, inhibiting both juveniles (J2) nematodes and egg hatching. The results of this work suggest a novel use of SPP for cost-effective bioproduction of HPC, a novel potential nematodes inhibitor. Moreover, the combination of MgSO4 and Ca3(PO4)2 was also found to be a novel salt composition that significantly enhanced phenazine yield by P. aeruginosa fermentation in this work.
Collapse
|