1
|
Gholam GM, Mahendra FR, Irsal RAP, Dwicesaria MA, Ariefin M, Kristiadi M, Rizki AFM, Azmi WA, Artika IM, Siregar JE. Computational exploration of compounds in Xylocarpus granatum as a potential inhibitor of Plasmodium berghei using docking, molecular dynamics, and DFT studies. Biochem Biophys Res Commun 2024; 733:150684. [PMID: 39293331 DOI: 10.1016/j.bbrc.2024.150684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024]
Abstract
Malaria remains a global health concern, with the emergence of resistance to the antimalarial drug atovaquone through cytochrome b (cyt b) being well-documented. This study was prompted by the presence of this mutation in cyt b to enable new drug candidates capable of overcoming drug resistance. Our objective was to identify potential drug candidates from compounds of Xylocarpus granatum by computationally assessing their interactions with Plasmodium berghei cyt b. Using computational methods, we modeled cyt b (GenBank: AF146076.1), identified the binding cavity, and analyzed the Ramachandran plot against cyt b. Additionally, we conducted drug-likeness and absorption, distribution, metabolism, excretion, and toxicity (ADMET) studies, along with density functional theory (DFT) analysis of the compounds. Molecular docking and molecular dynamics simulation (MDS) were used to evaluate the binding energy and stability of the cyt b-ligand complex. Notably, our investigation highlighted kaempferol as a promising compound due to its high binding energy of 7.67 kcal/mol among all X. granatum compounds, coupled with favorable pharmacological properties (ADMET) and antiprotozoal properties at Pa 0.345 > Pi 0.009 (PASS value). DFT analysis showed that kaempferol has an energy gap of 4.514 eV. MDS indicated that all tested ligands caused changes in bonding and affected the structural conformation of cyt b, as observed before MDS (0 ns) and after MDS (100 ns). The most notable differences were observed in the types of hydrogen bonds between 0 and 100 ns. Nevertheles, MDS results from a 100 ns simulation revealed consistent behavior for kaempferol across various parameters including root mean square deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration (Rg), solvent-accessible surface area (SASA), molecular mechanics-Poisson Boltzmann surface area (MM-PBSA), and hydrogen bonds. The cyt b-kaempferol complex demonstrated favorable energy stability, as supported by the internal energy distribution values observed in principal component analysis (PCA), which closely resembled those of the atovaquone control. Additionally, trajectory stability analysis indicated structural stability, with a cumulative eigenvalue of 24.7 %. Dynamic cross-correlation matrix (DCCM) analysis revealed a positive correlation among catalytic cytochrome residues within the amino acid residues range 119-268. The results of our research indicate that the structure of kaempferol holds promise as a potential candidate against Plasmodium.
Collapse
Affiliation(s)
- Gusnia Meilin Gholam
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Dramaga Campus, Bogor 16680, Indonesia; Bioinformatics Research Center, Indonesian Institute of Bioinformatics (INBIO Indonesia), Malang, East Java, 65145, Indonesia.
| | - Fachrur Rizal Mahendra
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Dramaga Campus, Bogor 16680, Indonesia; Bioinformatics Research Center, Indonesian Institute of Bioinformatics (INBIO Indonesia), Malang, East Java, 65145, Indonesia.
| | - Riyan Alifbi Putera Irsal
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Dramaga Campus, Bogor 16680, Indonesia.
| | - Maheswari Alfira Dwicesaria
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Dramaga Campus, Bogor 16680, Indonesia; Bioinformatics Research Center, Indonesian Institute of Bioinformatics (INBIO Indonesia), Malang, East Java, 65145, Indonesia.
| | - Mokhamat Ariefin
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Palangka Raya, Indonesia.
| | - Mikael Kristiadi
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Dramaga Campus, Bogor 16680, Indonesia.
| | - Andita Fitri Mutiara Rizki
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Jalan Raya Bogor Km. 46, Cibinong, Bogor 16911, Indonesia.
| | - Wihda Aisarul Azmi
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Jalan Raya Bogor Km. 46, Cibinong, Bogor 16911, Indonesia.
| | - I Made Artika
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Dramaga Campus, Bogor 16680, Indonesia.
| | - Josephine Elizabeth Siregar
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Jalan Raya Bogor Km. 46, Cibinong, Bogor 16911, Indonesia.
| |
Collapse
|
2
|
Yuan Q, Lv K, Huang J, Sun S, Fang Z, Tan H, Li H, Chen D, Zhao L, Gao C, Liu Y. Simulated digestion, dynamic changes during fecal fermentation and effects on gut microbiota of Avicennia marina (Forssk.) Vierh. fruit non-starch polysaccharides. Food Chem X 2022; 16:100475. [PMID: 36263243 PMCID: PMC9574768 DOI: 10.1016/j.fochx.2022.100475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/27/2022] [Accepted: 10/11/2022] [Indexed: 11/08/2022] Open
Abstract
Avicennia marina fruit non-starch polysaccharides (AMFPs) were obtained and analyzed. Dynamic changes of AMFPs during simulated digestion and fermentation were revealed. AMFPs were not digested by the digestive juice but were utilized by gut microbiota. Beneficial microbiota, such as Mistuokella, and Prevotella were obviously increased. Harmful bacteria were obviously inhibited and SCFA levels were obviously promoted.
Grey mangrove (Avicennia marina (Forssk.) Vierh.) fruit is a traditional folk medicine and health food consumed in many countries. In this study, its polysaccharides (AMFPs) were obtained and analyzed by chemical and instrumental methods, with the results indicating that AMFPs consisted of galactose, galacturonic acid, arabinose, and rhamnose in a molar ratio of 4.99:3.15:5.38:1.15. The dynamic changes in AMFPs during the digestion and fecal fermentation processes were then investigated. The results confirmed that AMFPs were not depolymerized by gastric acid and various digestive enzymes. During fermentation, 56.05 % of the AMFPs were utilized by gut microbiota. Galacturonic acid, galactose, and arabinose from AMFPs, were mostly consumed by gut microbiota. AMFPs obviously decreased harmful bacteria and increased some beneficial microbiota, including Megasphaera, Mistuokella, Prevotella, and Megamonas. Furthermore, AMFPs obviously increased the levels of various short-chain fatty acids. These findings suggest that AMFPs have potential prebiotic applications for improving gut health.
Collapse
Affiliation(s)
- Qingxia Yuan
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China
| | - Kunling Lv
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China,College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, Guangxi, China
| | - Jinwen Huang
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China
| | - Shujing Sun
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China
| | - Ziyu Fang
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China
| | - Hongjie Tan
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China
| | - Hong Li
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China
| | - Dan Chen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Longyan Zhao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China,Corresponding authors.
| | - Chenghai Gao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China,Corresponding authors.
| | - Yonghong Liu
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China,Corresponding authors.
| |
Collapse
|