1
|
Xu X, Wang Q, Yang L, Chen Z, Zhou Y, Feng H, Zhang P, Wang J. Effects of Exocellobiohydrolase CBHA on Fermentation of Tobacco Leaves. J Microbiol Biotechnol 2024; 34:1727-1737. [PMID: 39049482 PMCID: PMC11380505 DOI: 10.4014/jmb.2404.04028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 07/27/2024]
Abstract
The quality of tobacco is directly affected by macromolecular content, fermentation is an effective method to improve biochemical properties. In this study, we utilized CBHA (cellobiohydrolase A) glycosylase, which was expressed by Pichia pastoris, as an additive for fermentation. The contents of main chemical components of tobacco leaves after fermentation were determined, and the changes of microbial community structure and abundance in tobacco leaves during fermentation were analyzed. The relationship between chemical composition and changes in microbial composition was investigated, and the function of bacteria and fungi in fermentation was predicted to identify possible metabolic pathways. After 48 h of CBHA fermentation, the contents of starch, cellulose and total nitrogen in tobacco leaf decreased by 17.60%, 28.91% and 16.05%, respectively. The microbial community structure changed significantly, with Aspergillus abundance decreasing significantly, while Filobasidum, Cladosporium, Bullera, Komagataella, etc., increased in CBHA treated group. Soluble sugar was most affected by microbial community in tobacco leaves, which was negatively correlated with starch, cellulose and total nitrogen. During the fermentation process, the relative abundance of metabolism-related functional genes increased, and the expressions of cellulase and endopeptidase also increased. The results showed that the changes of bacterial community and dominant microbial community on tobacco leaves affected the content of chemical components in tobacco leaves, and adding CBHA for fermentation had a positive effect on improving the quality of tobacco leaves.
Collapse
Affiliation(s)
- Xueqin Xu
- China Tobacco Guangxi Industrial Co., Ltd., P.R. China
| | - Qianqian Wang
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, P. R. China
| | - Longyan Yang
- China Tobacco Guangxi Industrial Co., Ltd., P.R. China
| | - Zhiyan Chen
- China Tobacco Guangxi Industrial Co., Ltd., P.R. China
| | - Yun Zhou
- China Tobacco Guangxi Industrial Co., Ltd., P.R. China
| | - Hui Feng
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, P. R. China
| | - Peng Zhang
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, P. R. China
| | - Jie Wang
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, P. R. China
| |
Collapse
|
2
|
Xie W, Li X, Xu H, Chen F, Cheng KW, Liu H, Liu B. Optimization of Heterotrophic Culture Conditions for the Microalgae Euglena gracilis to Produce Proteins. Mar Drugs 2023; 21:519. [PMID: 37888454 PMCID: PMC10608195 DOI: 10.3390/md21100519] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
Euglena gracilis is one of the few permitted edible microalgae. Considering consumer acceptance, E. gracilis grown heterotrophically with yellow appearances have wider food industrial applications such as producing meat analogs than green cells. However, there is much room to improve the protein content of heterotrophic culture cells. In this study, the effects of nitrogen sources, temperature, initial pH, and C/N ratios on the protein production of E. gracilis were evaluated under heterotrophic cultivation. These results indicated that ammonium sulfate was the optimal nitrogen source for protein production. The protein content of E. gracilis cultured by ammonium sulfate increased by 113% and 44.7% compared with that cultured by yeast extract and monosodium glutamate, respectively. The manipulation of the low C/N ratio further improved E. gracilis protein content to 66.10% (w/w), which was 1.6-fold of that in the C/N = 25 group. Additionally, amino acid analysis revealed that the nitrogen-to-protein conversion factor (NTP) could be affected by nitrogen sources. A superior essential amino acid index (EAAI) of 1.62 and a balanced amino acid profile further confirmed the high nutritional value of E. gracilis protein fed by ammonium sulfate. This study highlighted the vast potency of heterotrophic cultured E. gracilis as an alternative dietary protein source.
Collapse
Affiliation(s)
- Weiying Xie
- SZU-HKUST Joint Ph.D. Program in Marine Environmental Science, Shenzhen University, Shenzhen 518060, China (H.X.)
- Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen518060, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Xiaojie Li
- Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen518060, China
| | - Huo Xu
- SZU-HKUST Joint Ph.D. Program in Marine Environmental Science, Shenzhen University, Shenzhen 518060, China (H.X.)
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Feng Chen
- Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen518060, China
| | - Ka-Wing Cheng
- Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen518060, China
| | - Hongbin Liu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Hong Kong Branch of Southern Marine Science & Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Bin Liu
- Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen518060, China
| |
Collapse
|
3
|
Li YW, Guo Q, Peng QQ, Shen Q, Nie ZK, Ye C, Shi TQ. Recent Development of Advanced Biotechnology in the Oleaginous Fungi for Arachidonic Acid Production. ACS Synth Biol 2022; 11:3163-3173. [PMID: 36221956 DOI: 10.1021/acssynbio.2c00483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Arachidonic acid is an essential ω-6 polyunsaturated fatty acid, which plays a significant role in cardiovascular health and neurological development, leading to its wide use in the food and pharmaceutical industries. Traditionally, ARA is obtained from deep-sea fish oil. However, this source is limited by season and is depleting the already threatened global fish stocks. With the rapid development of synthetic biology in recent years, oleaginous fungi have gradually attracted increasing attention as promising microbial sources for large-scale ARA production. Numerous advanced technologies including metabolic engineering, dynamic regulation of fermentation conditions, and multiomics analysis were successfully adapted to increase ARA synthesis. This review summarizes recent advances in the bioengineering of oleaginous fungi for ARA production. Finally, perspectives for future engineering approaches are proposed to further improve the titer yield and productivity of ARA.
Collapse
Affiliation(s)
- Ya-Wen Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Qi Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China.,College of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Qian-Qian Peng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Qi Shen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Zhi-Kui Nie
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China.,Jiangxi New Reyphon Biochemical Co., Ltd, Salt & Chemical Industry, Xingan, Jiangxi 331399, People's Republic of China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China.,College of Food Science and Technology, Nanchang University, No. 999 Xuefu Road, Nanchang 330031, People's Republic of China
| |
Collapse
|