1
|
Maher Zahran E, Abdelwahab MF, Mohyeldin RH, Tammam OY, Abdel-Maqsoud NMR, Altemani FH, Algehainy NA, Alanazi MA, Jalal MM, Elrehany MA, Bringmann G, Ramadan Abdelmohsen U. Combination of Callyspongia sp. and Stem Cells for Wound Repair and Skin Regeneration: in Vivo and in Silico Evidences. Chem Biodivers 2024; 21:e202400682. [PMID: 38941178 DOI: 10.1002/cbdv.202400682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/30/2024]
Abstract
Delayed healing of chronic wounds results in amputation and mortality rates in serious cases. The present study examines the merged wound-restorative efficacy of injectable bone marrow-derived mesenchymal stem cells (BMMSCs) and topical Callyspongia sp. extract in immunocompromised rats. HR-LC-MS analysis of Callyspongia sp. extract tentatively identified twenty-nine compounds (1-29) and highlighted its richness in fatty acids and terpenoids, known for their wound regenerating efficacies. The wound closure was greatly prominent in the BMMSCs/Callyspongia sp. group in contrast to the control group (p<0.001). The RT-PCR gene expression emphasized these results by attenuating the oxidative, inflammatory, and immunity markers, further confirmed by histopathological findings. Additionally, in silico modeling was particularly targeting matrix metalloproteinase-9 (MMP9), a key player in wound healing processes. Computational analysis revealed that compounds 18 and 19 potentially modulate MMP9 activity. The combination of BMMSCs and topical Callyspongia sp. extract holds a promise for regenerative therapy constituting a drastic advance in the wound cure of immunocompromised patients, eventually further safety assessments and clinical trials are required.
Collapse
Affiliation(s)
- Eman Maher Zahran
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Minia, 61111, Egypt
| | - Miada F Abdelwahab
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Reham H Mohyeldin
- Department of Pharmacology, Faculty of Pharmacy, Deraya University, Minia, 61111, Egypt
| | - Omar Y Tammam
- Department of Biochemistry, Faculty of Pharmacy, New Valley University, New Valley, Egypt
| | | | - Faisal H Altemani
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Naseh A Algehainy
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Mohammed A Alanazi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Mohammed M Jalal
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Mahmoud A Elrehany
- Department of Biochemistry, Faculty of Pharmacy, Deraya University, Minia, 61111, Egypt
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Minia, 61111, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| |
Collapse
|
2
|
Carroll AR, Copp BR, Grkovic T, Keyzers RA, Prinsep MR. Marine natural products. Nat Prod Rep 2024; 41:162-207. [PMID: 38285012 DOI: 10.1039/d3np00061c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Covering: January to the end of December 2022This review covers the literature published in 2022 for marine natural products (MNPs), with 645 citations (633 for the period January to December 2022) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, the submerged parts of mangroves and other intertidal plants. The emphasis is on new compounds (1417 in 384 papers for 2022), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. An analysis of NP structure class diversity in relation to biota source and biome is discussed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia.
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Tanja Grkovic
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, and Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Robert A Keyzers
- Centre for Biodiscovery, and School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|