1
|
Carroll AR, Copp BR, Grkovic T, Keyzers RA, Prinsep MR. Marine natural products. Nat Prod Rep 2024; 41:162-207. [PMID: 38285012 DOI: 10.1039/d3np00061c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Covering: January to the end of December 2022This review covers the literature published in 2022 for marine natural products (MNPs), with 645 citations (633 for the period January to December 2022) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, the submerged parts of mangroves and other intertidal plants. The emphasis is on new compounds (1417 in 384 papers for 2022), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. An analysis of NP structure class diversity in relation to biota source and biome is discussed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia.
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Tanja Grkovic
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, and Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Robert A Keyzers
- Centre for Biodiscovery, and School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
2
|
Verma S, Suman P, Mandal S, Kumar R, Sahana N, Siddiqui N, Chakdar H. Assessment and identification of bioactive metabolites from terrestrial Lyngbya spp. responsible for antioxidant, antifungal, and anticancer activities. Braz J Microbiol 2023; 54:2671-2687. [PMID: 37688688 PMCID: PMC10689636 DOI: 10.1007/s42770-023-01111-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/20/2023] [Indexed: 09/11/2023] Open
Abstract
Lyngbya from fresh and marine water produces an array of pharmaceutically bioactive therapeutic compounds. However, Lyngbya from agricultural soil is still poorly investigated. Hence, in this study, the bioactive potential of different Lyngbya spp. extract was explored. Intracellular petroleum ether extract of L. hieronymusii K81 showed the highest phenolic content (626.22 ± 0.65 μg GAEs g-1 FW), while intracellular ethyl acetate extract of L. aestuarii K97 (74.02 ± 0.002 mg QEs g-1 FW) showed highest flavonoid content. Highest free radical scavenging activity in terms of ABTS•+ was recorded in intracellular methanolic extract of Lyngbya sp. K5 (97.85 ± 0.068%), followed by L. wollei K80 (97.22 ± 0.059%) while highest DPPH• radical scavenging activity observed by intracellular acetone extract of Lyngbya sp. K5 (54.59 ± 0.165%). All the extracts also showed variable degrees of antifungal activities against Fusarium udum, F. oxysporum ciceris, Colletotrichum capsici, and Rhizoctonia solani. Further, extract of L. wollei K80 and L. aestuarii K97 showed potential anticancer activities against MCF7 (breast cancer) cell lines. GC-MS analyses of intracellular methanolic extract of L. wollei K80 showed the dominance of PUFAs with 9,12,15-octadecatrienoic acid, methyl ester, (Z,Z,Z) as the most abundant bioactive compound. On the other hand, the extracellular ethyl acetate extract of L. aestuarii K97 was rich in alkanes and alkenes with 1-hexyl-2-nitrocyclohexane as the most predominant compound. Extracts of Lyngbya spp. rich in novel secondary metabolites such as PUFAs, alkanes, and alkenes can be further explored as an alternative and low-cost antioxidant and potential apoptogens for cancer therapy.
Collapse
Affiliation(s)
- Shaloo Verma
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201313, India
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh, 275103, India
| | - Prabhat Suman
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Somnath Mandal
- Department of Biochemistry, Uttar Banga Krishi Vishwavidyalaya (UBKV), Cooch Behar, West Bengal, 736165, India
| | - Roshan Kumar
- Department of Microbiology, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Nandita Sahana
- Department of Biochemistry, Uttar Banga Krishi Vishwavidyalaya (UBKV), Cooch Behar, West Bengal, 736165, India
| | - Nahid Siddiqui
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201313, India
| | - Hillol Chakdar
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh, 275103, India.
| |
Collapse
|
3
|
Swain S, Bej S, Bishoyi AK, Mandhata CP, Sahoo CR, Padhy RN. Recent progression on phytochemicals and pharmacological properties of the filamentous cyanobacterium Lyngbya sp. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2197-2216. [PMID: 37103519 DOI: 10.1007/s00210-023-02488-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/05/2023] [Indexed: 04/28/2023]
Abstract
The distribution and phytochemistry of the non-nitrogen fixing, filamentous cyanobacterium (blue-green alga) Lyngbya sp., and the inherent antimicrobial and anticancer activities of its phycochemicals as well as of the biosynthesized nanoparticles as their pharmaceutical potencies are considered. Several phycocompounds of curio, apramide, apratoxin, benderamide, cocosamides, deoxymajusculamide, flavonoids, lagunamides, lipids, proteins, amino acids, lyngbyabellin, lyngbyastatin, majusculamide, peptides, etc. were isolated from Lyngbya sp., which had a lot of potential pharmaceutical activities; those compounds had antibacterial, antiviral, antifungal, anticancer, antioxidant, anti-inflammatory, ultraviolet protectant, and other activities. Particularly, several Lyngbya phycocompounds had potent antimicrobial potencies, seen through in vitro controlling of several frequently encountered multidrug-resistant (MDR) clinically belligerent strains of pathogenic bacteria isolated from clinical samples. The aqueous extracts of Lyngbya sp. were used for the synthesis of silver and copper oxide nanoparticles, which were used in pharmacological trials too. The nanoparticles biosynthesized with Lyngbya sp. had several uses such as biofuel, agro-based applications, in cosmetics, and industrial uses as biopolymers, and being potent antimicrobial and anticancer agents and in drug-delivery too, as medical applications. It could be concluded that the Lyngbya phycochemicals and the biosynthesized nanoparticles have future uses as antimicrobial namely as bacterial and fungal and anti-cancer agents, with promising medical and industrial uses.
Collapse
Affiliation(s)
- Surendra Swain
- Central Research Laboratory, Institute of Medical Sciences and Sum Hospital, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, 751003, Odisha, India
| | - Shuvasree Bej
- Central Research Laboratory, Institute of Medical Sciences and Sum Hospital, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, 751003, Odisha, India
| | - Ajit Kumar Bishoyi
- Central Research Laboratory, Institute of Medical Sciences and Sum Hospital, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, 751003, Odisha, India
| | - Chinmayee Priyadarsani Mandhata
- Central Research Laboratory, Institute of Medical Sciences and Sum Hospital, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, 751003, Odisha, India
| | - Chita Ranjan Sahoo
- Central Research Laboratory, Institute of Medical Sciences and Sum Hospital, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, 751003, Odisha, India.
| | - Rabindra Nath Padhy
- Central Research Laboratory, Institute of Medical Sciences and Sum Hospital, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, 751003, Odisha, India.
| |
Collapse
|
4
|
Salleh NF, Wang J, Kundukad B, Oluwabusola ET, Goh DXY, Phyo MY, Tong JJL, Kjelleberg S, Tan LT. Cyclopropane-Containing Specialized Metabolites from the Marine Cyanobacterium cf. Lyngbya sp. Molecules 2023; 28:molecules28093965. [PMID: 37175374 PMCID: PMC10180397 DOI: 10.3390/molecules28093965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/28/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023] Open
Abstract
Marine cyanobacteria are known to produce structurally diverse bioactive specialized metabolites during bloom occurrence. These ecologically active allelochemicals confer chemical defense for the microalgae from competing microbes and herbivores. From a collection of a marine cyanobacterium, cf. Lyngbya sp., a small quantity of a new cyclopropane-containing molecule, benderadiene (2), and lyngbyoic acid (1) were purified and characterized using spectroscopic methods. Using live reporter quorum-sensing (QS) inhibitory assays, based on P. aeruginosa PAO1 lasB-gfp and rhlA-gfp strains, both compounds were found to inhibit QS-regulated gene expression in a dose-dependent manner. In addition to lyngbyoic acid being more active in the PAO1 lasB-gfp biosensor strain (IC50 of 20.4 µM), it displayed anti-biofilm activity when incubated with wild-type P. aeruginosa. The discovery of lyngbyoic acid in relatively high amounts provided insights into its ecological significance as a defensive allelochemical in targeting competing microbes through interference with their QS systems and starting material to produce other related analogs. Similar strategies could be adopted by other marine cyanobacterial strains where the high production of other lipid acids has been reported. Preliminary evidence is provided from the virtual molecular docking of these cyanobacterial free acids at the ligand-binding site of the P. aeruginosa LasR transcriptional protein.
Collapse
Affiliation(s)
- Nurul Farhana Salleh
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
| | - Jiale Wang
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
| | - Binu Kundukad
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Emmanuel T Oluwabusola
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3FX, UK
| | - Delia Xin Yin Goh
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
| | - Ma Yadanar Phyo
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
| | - Jasmine Jie Lin Tong
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
| | - Staffan Kjelleberg
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, NSW 2033, Australia
| | - Lik Tong Tan
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
| |
Collapse
|