1
|
Dang CH, Nguyen LKT, Tran MT, Le VD, Ty NM, Pham TNH, Vu-Quang H, Chi TTK, Giang TTH, Tu NTT, Nguyen TD. Enhanced catalytic reduction through in situ synthesized gold nanoparticles embedded in glucosamine/alginate nanocomposites. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:1227-1237. [PMID: 39376727 PMCID: PMC11457073 DOI: 10.3762/bjnano.15.99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/06/2024] [Indexed: 10/09/2024]
Abstract
This study introduces a highly efficient and straightforward method for synthesizing gold nanoparticles (AuNPs) within a glucosamine/alginate (GluN/Alg) nanocomposite via an ionotropic gelation mechanism in aqueous environment. The resulting nanocomposite, AuNPs@GluN/Alg, underwent thorough characterization using UV-vis, EDX, FTIR, SEM, TEM, SAED, and XRD analyses. The spherical AuNPs exhibited uniform size with an average diameter of 10.0 nm. The nanocomposites facilitated the recyclable reduction of organic dyes, including 2-nitrophenol, 4-nitrophenol, and methyl orange, employing NaBH4 as the reducing agent. Kinetic studies further underscored the potential of this nanocomposite as a versatile catalyst with promising applications across various industrial sectors.
Collapse
Affiliation(s)
- Chi-Hien Dang
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A, TL29, Thanh Loc Ward, District 12, Ho Chi Minh City, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay District, Hanoi, Vietnam
| | - Le-Kim-Thuy Nguyen
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A, TL29, Thanh Loc Ward, District 12, Ho Chi Minh City, Vietnam
| | - Minh-Trong Tran
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A, TL29, Thanh Loc Ward, District 12, Ho Chi Minh City, Vietnam
| | - Van-Dung Le
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A, TL29, Thanh Loc Ward, District 12, Ho Chi Minh City, Vietnam
| | - Nguyen Minh Ty
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A, TL29, Thanh Loc Ward, District 12, Ho Chi Minh City, Vietnam
| | - T Ngoc Han Pham
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| | - Hieu Vu-Quang
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| | - Tran Thi Kim Chi
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc 14 Viet, Cau Giay District, Hanoi 11000, Vietnam
| | - Tran Thi Huong Giang
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc 14 Viet, Cau Giay District, Hanoi 11000, Vietnam
| | - Nguyen Thi Thanh Tu
- Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Thanh-Danh Nguyen
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A, TL29, Thanh Loc Ward, District 12, Ho Chi Minh City, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay District, Hanoi, Vietnam
| |
Collapse
|
2
|
Zahariev N, Pilicheva B. A Novel Method for the Preparation of Casein-Fucoidan Composite Nanostructures. Polymers (Basel) 2024; 16:1818. [PMID: 39000673 PMCID: PMC11244046 DOI: 10.3390/polym16131818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/17/2024] Open
Abstract
The aim of the study was to develop casein-fucoidan composite nanostructures through the method of polyelectrolyte complexation and subsequent spray drying. To determine the optimal parameters for the preparation of the composite structures and to investigate the influence of the production and technological parameters on the main structural and morphological characteristics of the obtained structures, 3(k-p) fractional factorial design was applied. The independent variables (casein to fucoidan ratio, glutaraldehyde concentration, and spray intensity) were varied at three levels (low, medium, and high) and their effect on the yield, the average particle size, and the zeta potential were evaluated statistically. Based on the obtained results, models C1F1G1Sp.30, C1F1G2Sp.40, and C1F1G3Sp.50, which have an average particle size ranging from (0.265 ± 0.03) µm to (0.357 ± 0.02) µm, a production yield in the range (48.9 ± 2.9) % to (66.4 ± 2.2) %, and a zeta potential varying from (-20.12 ± 0.9) mV to (-25.71 ± 1.0) mV, were selected as optimal for further use as drug delivery systems.
Collapse
Affiliation(s)
- Nikolay Zahariev
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 15A Vassil Aprilov Blvd, 4002 Plovdiv, Bulgaria
- Research Institute at Medical University of Plovdiv, 15A Vassil Aprilov Blvd, 4002 Plovdiv, Bulgaria
| | - Bissera Pilicheva
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 15A Vassil Aprilov Blvd, 4002 Plovdiv, Bulgaria
- Research Institute at Medical University of Plovdiv, 15A Vassil Aprilov Blvd, 4002 Plovdiv, Bulgaria
| |
Collapse
|
3
|
Saad MH, Sidkey NM, El-Fakharany EM. Characterization and optimization of exopolysaccharide extracted from a newly isolated halotolerant cyanobacterium, Acaryochloris Al-Azhar MNE ON864448.1 with antiviral activity. Microb Cell Fact 2024; 23:117. [PMID: 38644470 PMCID: PMC11034128 DOI: 10.1186/s12934-024-02383-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/01/2024] [Indexed: 04/23/2024] Open
Abstract
Several antiviral agents lost their efficacy due to their severe side effects and virus mutations. This study aimed to identify and optimize the conditions for exopolysaccharide (EPS) production from a newly isolated cyanobacterium, Acaryochloris Al-Azhar MNE ON864448.1, besides exploring its antiviral activity. The cyanobacterial EPS was purified through DEAE-52 cellulose column with a final yield of 83.75%. Different analysis instruments were applied for EPS identification, including Fourier-transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), and gas chromatographic-mass spectrometry (GC-MS). Plackett-Burman's design demonstrated that working volume (X1), EDTA (X2), inoculum size (X3), CaCl2 (X4), and NaCl (X5) are the most important variables influencing EPS production. Central composite design (CCD) exhibited maximum EPS yield (9.27 mg/mL) at a working volume of 300 mL in a 1 L volumetric flask, EDTA 0.002 g/L, inoculum size 7%, CaCl2 0.046 g/L, and NaCl 20 g/L were applied. EPS showed potent antiviral activities at different stages of herpes simplex virus type-1 and 2 (HSV-1, HSV-2), adenovirus (ADV) and coxsackievirus (A16) infections. The highest half-maximal inhibitory concentration (IC50) (6.477 µg/mL) was recorded during HSV-1 internalization mechanism, while the lowest IC50 (0.005669 µg/mL) was recorded during coxsackievirus neutralization mechanism.
Collapse
Affiliation(s)
- Mabroka H Saad
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El Arab, Alexandria, Egypt
- Botany & Microbiology Department, Faculty of Science, Al Azhar University (Girls Branch), Nasr City, Egypt
| | - Nagwa M Sidkey
- Botany & Microbiology Department, Faculty of Science, Al Azhar University (Girls Branch), Nasr City, Egypt
| | - Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El Arab, Alexandria, Egypt.
- Pharmaceutical and Fermentation Industries Development Centre (PFIDC), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al Arab, Alexandria, Egypt.
| |
Collapse
|
4
|
Mougin J, Pavaux AS, Fanesi A, Lopez J, Pruvost E, Guihéneuf F, Sciandra A, Briandet R, Lopes F. Bacterial adhesion inhibition by microalgal EPSs from Cylindrotheca closterium and Tetraselmis suecica biofilms. Appl Microbiol Biotechnol 2024; 108:168. [PMID: 38261095 DOI: 10.1007/s00253-023-12960-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 01/24/2024]
Abstract
In the food industry, successful bacterial pathogen colonization and persistence begin with their adhesion to a surface, followed by the spatial development of mature biofilm of public health concerns. Compromising bacterial settlement with natural inhibitors is a promising alternative to conventional anti-fouling treatments typically based on chemical biocides that contribute to the growing burden of antimicrobial resistance. In this study, three extracellular polymeric substance (EPS) fractions extracted from microalgae biofilms of Cylindrotheca closterium (fraction C) and Tetraselmis suecica (fraction Ta rich in insoluble scale structure and fraction Tb rich in soluble EPS) were screened for their anti-adhesive properties, against eight human food-borne pathogens belonging to Escherichia coli, Staphylococcus aureus, Salmonella enterica subsp. enterica, and Listeria monocytogenes species. The results showed that the fraction Ta was the most effective inducing statistically significant reduction for three strains of E. coli, S. aureus, and L. monocytogenes. Overall, EPSs coating on polystyrene surfaces of the different fractions increased the hydrophilic character of the support. Differences in bacterial adhesion on the different coated surfaces could be explained by several dissimilarities in the structural and physicochemical EPS compositions, according to HPLC and ATR-FTIR analysis. Interestingly, while fractions Ta and Tb were extracted from the same microalgal culture, distinct adhesion patterns were observed, highlighting the importance of the extraction process. Overall, the findings showed that EPS extracted from microalgal photosynthetic biofilms can exhibit anti-adhesive effects against food-borne pathogens and could help develop sustainable and non-toxic anti-adhesive surfaces for the food industry. KEY POINTS: •EPSs from a biofilm-based culture of C. closterium/T. suecica were characterized. •Microalgal EPS extracted from T. suecica biofilms showed bacterial anti-adhesive effects. •The anti-adhesive effect is strain-specific and affects both Gram - and Gram + bacteria.
Collapse
Affiliation(s)
- Julia Mougin
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
- Laboratoire Génie Des Procédés Et Matériaux (LGPM), CentraleSupélec, Université Paris-Saclay, 91190, Gif-Sur-Yvette, France
| | - Anne-Sophie Pavaux
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
- Laboratoire Génie Des Procédés Et Matériaux (LGPM), CentraleSupélec, Université Paris-Saclay, 91190, Gif-Sur-Yvette, France
| | - Andrea Fanesi
- Laboratoire Génie Des Procédés Et Matériaux (LGPM), CentraleSupélec, Université Paris-Saclay, 91190, Gif-Sur-Yvette, France
| | - Julien Lopez
- Laboratoire d, Océanographie de Villefranche LOV, CNRS, Sorbonne Université, UMR 7093, BP 28, 06230, Villefranche-Sur-Mer, France
| | - Eric Pruvost
- Laboratoire d, Océanographie de Villefranche LOV, CNRS, Sorbonne Université, UMR 7093, BP 28, 06230, Villefranche-Sur-Mer, France
| | | | - Antoine Sciandra
- Laboratoire d, Océanographie de Villefranche LOV, CNRS, Sorbonne Université, UMR 7093, BP 28, 06230, Villefranche-Sur-Mer, France
| | - Romain Briandet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France.
| | - Filipa Lopes
- Laboratoire Génie Des Procédés Et Matériaux (LGPM), CentraleSupélec, Université Paris-Saclay, 91190, Gif-Sur-Yvette, France.
| |
Collapse
|