1
|
Morelli S, D'Amora U, Piscioneri A, Oliviero M, Scialla S, Coppola A, De Pascale D, Crocetta F, De Santo MP, Davoli M, Coppola D, De Bartolo L. Methacrylated chitosan/jellyfish collagen membranes as cell instructive platforms for liver tissue engineering. Int J Biol Macromol 2024; 281:136313. [PMID: 39370070 DOI: 10.1016/j.ijbiomac.2024.136313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/17/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Although the multidisciplinary area of liver tissue engineering is in continuous progress, research in this field is still focused on developing an ideal liver tissue template. Innovative strategies are required to improve membrane stability and bioactivity. In our study, sustainable biomimetic membranes were developed by blending methacrylated chitosan (CSMA) with jellyfish collagen (jCol) for liver tissue engineering applications. The in vitro biological behaviour demonstrated the capability of the developed membranes to create a suitable milieu to enable hepatocyte growth and differentiation. The functionalization of chitosan together with the biocompatibility of marine collagen and the intrinsic membrane properties offered the ideal biochemical, topographical, and mechanical cues to the cells. Thanks to the enhanced CSMA/jCol membranes' characteristics, hepatocytes on such biomaterials exhibited improved growth, viability, and active liver-specific functions when compared to the cell fate achieved on CSMA membranes. Our study provides new insights about the influence of membrane properties on liver cells behaviour for the design of novel instructive biomaterials. The enrichment of functionalized chitosan with marine collagen represents a promising and innovative approach for the development of an appropriate platform for hepatic tissue engineering.
Collapse
Affiliation(s)
- Sabrina Morelli
- Institute on Membrane Technology, National Research Council of Italy, CNR-ITM, Via P. Bucci, Cubo 17/C, I-87036 Rende, (CS), Italy.
| | - Ugo D'Amora
- Institute of Polymers, Composites and Biomaterials, National Research Council, CNR-IPCB, Naples, Italy
| | - Antonella Piscioneri
- Institute on Membrane Technology, National Research Council of Italy, CNR-ITM, Via P. Bucci, Cubo 17/C, I-87036 Rende, (CS), Italy
| | - Maria Oliviero
- Institute of Polymers, Composites and Biomaterials, National Research Council, CNR-IPCB, Naples, Italy
| | - Stefania Scialla
- Institute of Polymers, Composites and Biomaterials, National Research Council, CNR-IPCB, Naples, Italy
| | - Alessandro Coppola
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Naples, Italy
| | - Donatella De Pascale
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Naples, Italy
| | - Fabio Crocetta
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; NBFC, National Biodiversity Future Center, Palermo Piazza Marina 61, 90133 Palermo, Italy
| | | | - Mariano Davoli
- Department of Biology, Ecology and Earth Science, DiBEST, University of Calabria, Rende, (CS), Italy
| | - Daniela Coppola
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Naples, Italy.
| | - Loredana De Bartolo
- Institute on Membrane Technology, National Research Council of Italy, CNR-ITM, Via P. Bucci, Cubo 17/C, I-87036 Rende, (CS), Italy
| |
Collapse
|
2
|
Salim NV, Madhan B, Glattauer V, Ramshaw JAM. Comprehensive review on collagen extraction from food by-products and waste as a value-added material. Int J Biol Macromol 2024; 278:134374. [PMID: 39098671 DOI: 10.1016/j.ijbiomac.2024.134374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/18/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
The consumption of animal products has witnessed a significant increase over the years, leading to a growing need for industries to adopt strict waste control measures to mitigate environmental impacts. The disposal of animal waste in landfill can result in diverse and potentially hazardous decomposition by-products. Animal by-products, derived from meat, poultry, seafood and fish industries, offer a substantial raw material source for collagen and gelatin production due to their high protein content. Collagen, being a major protein component of animal tissues, represents an abundant resource that finds application in various chemical and material industries. The demand for collagen-based products continues to grow, yet the availability of primary material remains limited and insufficient to meet projected needs. Consequently, repurposing waste materials that contain collagen provides an opportunity to meet this need while at the same time minimizing the amount of waste that is dumped. This review examines the potential to extract value from the collagen content present in animal-derived waste and by-products. It provides a systematic evaluation of different species groups and discusses various approaches for processing and fabricating repurposed collagen. This review specifically focuses on collagen-based research, encompassing an examination of its physical and chemical properties, as well as the potential for chemical modifications. We have detailed how the research and knowledge built on collagen structure and function will drive the new initiatives that will lead to the development of new products and opportunities in the future. Additionally, it highlights emerging approaches for extracting high-quality protein from waste and discusses efforts to fabricate collagen-based materials leading to the development of new and original products within the chemical, biomedical and physical science-based industries.
Collapse
Affiliation(s)
- Nisa V Salim
- School of Engineering, Swinburne University of Technology, Hawthorne, Victoria 3122, Australia.
| | - Balaraman Madhan
- Centre for Academic and Research Excellence, CSIR-Central Leather Research Institute, Sardar Patel Road, Adyar, Chennai 600 020, India
| | | | - John A M Ramshaw
- School of Engineering, Swinburne University of Technology, Hawthorne, Victoria 3122, Australia
| |
Collapse
|
3
|
Salthouse D, Goulding PD, Reay SL, Jackson EL, Xu C, Ahmed R, Mearns-Spragg A, Novakovic K, Hilkens CMU, Ferreira AM. Amine-reactive crosslinking enhances type 0 collagen hydrogel properties for regenerative medicine. Front Bioeng Biotechnol 2024; 12:1391728. [PMID: 39132253 PMCID: PMC11310005 DOI: 10.3389/fbioe.2024.1391728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024] Open
Abstract
Introduction Collagen is extensively utilised in regenerative medicine due to its highly desirable properties. However, collagen is typically derived from mammalian sources, which poses several limitations, including high cost, potential risk of immunogenicity and transmission of infectious diseases, and ethical and religious constraints. Jellyfish-sourced type 0 collagen represents a safer and more environmentally sustainable alternative collagen source. Methods Thus, we investigated the potential of jellyfish collagen-based hydrogels, obtained from Rhizostoma pulmo (R. pulmo) jellyfish, to be utilised in regenerative medicine. A variety of R. pulmo collagen hydrogels (RpCol hydrogels) were formed by adding a range of chemical crosslinking agents and their physicochemical and biological properties were characterised to assess their suitability for regenerative medicine applications. Results and Discussion The characteristic chemical composition of RpCol was confirmed by Fourier-transform infrared spectroscopy (FTIR), and the degradation kinetics, morphological, and rheological properties of RpCol hydrogels were shown to be adaptable through the addition of specific chemical crosslinking agents. The endotoxin levels of RpCol were below the Food and Drug Administration (FDA) limit for medical devices, thus allowing the potential use of RpCol in vivo. 8-arm polyethylene glycol succinimidyl carboxyl methyl ester (PEG-SCM)-crosslinked RpCol hydrogels preserved the viability and induced a significant increase in the metabolic activity of immortalised human mesenchymal stem/stromal cells (TERT-hMSCs), therefore demonstrating their potential to be utilised in a wide range of regenerative medicine applications.
Collapse
Affiliation(s)
- Daniel Salthouse
- School of Engineering, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Peter D. Goulding
- School of Engineering, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Sophie L. Reay
- School of Engineering, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Emma L. Jackson
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Chenlong Xu
- School of Engineering, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | | | | | - Katarina Novakovic
- School of Engineering, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Catharien M. U. Hilkens
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ana Marina Ferreira
- School of Engineering, Newcastle University, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
4
|
Rocha MS, Marques CF, Carvalho AC, Martins E, Ereskovsky A, Reis RL, Silva TH. The Characterization and Cytotoxic Evaluation of Chondrosia reniformis Collagen Isolated from Different Body Parts (Ectosome and Choanosome) Envisaging the Development of Biomaterials. Mar Drugs 2024; 22:55. [PMID: 38393026 PMCID: PMC10889977 DOI: 10.3390/md22020055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/25/2024] Open
Abstract
Chondrosia reniformis is a collagen-rich marine sponge that is considered a sustainable and viable option for producing an alternative to mammalian-origin collagens. However, there is a lack of knowledge regarding the properties of collagen isolated from different sponge parts, namely the outer region, or cortex, (ectosome) and the inner region (choanosome), and how it affects the development of biomaterials. In this study, a brief histological analysis focusing on C. reniformis collagen spatial distribution and a comprehensive comparative analysis between collagen isolated from ectosome and choanosome are presented. The isolated collagen characterization was based on isolation yield, Fourier-transformed infrared spectroscopy (FTIR), circular dichroism (CD), SDS-PAGE, dot blot, and amino acid composition, as well as their cytocompatibility envisaging the development of future biomedical applications. An isolation yield of approximately 20% was similar for both sponge parts, as well as the FTIR, CD, and SDS-PAGE profiles, which demonstrated that both isolated collagens presented a high purity degree and preserved their triple helix and fibrillar conformation. Ectosome collagen had a higher OHpro content and possessed collagen type I and IV, while the choanosome was predominately constituted by collagen type IV. In vitro cytotoxicity assays using the L929 fibroblast cell line displayed a significant cytotoxic effect of choanosome collagen at 2 mg/mL, while ectosome collagen enhanced cell metabolism and proliferation, thus indicating the latter as being more suitable for the development of biomaterials. This research represents a unique comparative study of C. reniformis body parts, serving as a support for further establishing this marine sponge as a promising alternative collagen source for the future development of biomedical applications.
Collapse
Affiliation(s)
- Miguel S. Rocha
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimaraes, Portugal; (M.S.R.); (C.F.M.); (A.C.C.); (E.M.); (R.L.R.)
- ICVS/3B’s–PT Government Associate Laboratory, 4806-909 Braga/Guimaraes, Portugal
| | - Catarina F. Marques
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimaraes, Portugal; (M.S.R.); (C.F.M.); (A.C.C.); (E.M.); (R.L.R.)
- ICVS/3B’s–PT Government Associate Laboratory, 4806-909 Braga/Guimaraes, Portugal
| | - Ana C. Carvalho
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimaraes, Portugal; (M.S.R.); (C.F.M.); (A.C.C.); (E.M.); (R.L.R.)
- ICVS/3B’s–PT Government Associate Laboratory, 4806-909 Braga/Guimaraes, Portugal
| | - Eva Martins
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimaraes, Portugal; (M.S.R.); (C.F.M.); (A.C.C.); (E.M.); (R.L.R.)
- ICVS/3B’s–PT Government Associate Laboratory, 4806-909 Braga/Guimaraes, Portugal
| | - Alexander Ereskovsky
- Institut Méditerranéen de Biodiversité et d’Ecologie Marine et Continentale (IMBE), Aix Marseille University, Avignon University, Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), 13007 Marseille, France;
- Faculty of Biology, Department of Embryology, Saint Petersburg State University, 199034 Saint Petersburg, Russia
- N.K. Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 119334 Moscow, Russia
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimaraes, Portugal; (M.S.R.); (C.F.M.); (A.C.C.); (E.M.); (R.L.R.)
- ICVS/3B’s–PT Government Associate Laboratory, 4806-909 Braga/Guimaraes, Portugal
| | - Tiago H. Silva
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimaraes, Portugal; (M.S.R.); (C.F.M.); (A.C.C.); (E.M.); (R.L.R.)
- ICVS/3B’s–PT Government Associate Laboratory, 4806-909 Braga/Guimaraes, Portugal
| |
Collapse
|
5
|
Rodríguez-Montaño ÓL, Vaiani L, Boccaccio A, Uva AE, Lo Muzio L, Spirito F, Dioguardi M, Santacroce L, Di Cosola M, Cantore S, Ballini A. Optimization of Cobalt-Chromium (Co-Cr) Scaffolds for Bone Tissue Engineering in Endocrine, Metabolic and Immune Disorders. Endocr Metab Immune Disord Drug Targets 2024; 24:430-440. [PMID: 37946349 DOI: 10.2174/0118715303258126231025115956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/01/2023] [Accepted: 09/21/2023] [Indexed: 11/12/2023]
Abstract
Approximately 50% of the adult global population is projected to suffer from some form of metabolic disease by 2050, including metabolic syndrome and diabetes mellitus. At the same time, this trend indicates a potential increase in the number of patients who will be in need of implant-supported reconstructions of specific bone regions subjected to inflammatory states. Moreover, physiological conditions associated with dysmetabolic subjects have been suggested to contribute to the severity of bone loss after bone implant insertion. However, there is a perspective evidence strengthening the hypothesis that custom-fabricated bioengineered scaffolds may produce favorable bone healing effects in case of altered endocrine or metabolic conditions. This perspective review aims to share a comprehensive knowledge of the mechanisms implicated in bone resorption and remodelling processes, which have driven researchers to develop metallic implants as the cobalt-chromium (Co-Cr) bioscaffolds, presenting optimized geometries that interact in an effective way with the osteogenetic precursor cells, especially in the cases of perturbed endocrine or metabolic conditions.
Collapse
Affiliation(s)
| | - Lorenzo Vaiani
- Department of Mechanics, Mathematics and Management, Polytechnic University of Bari, Bari, Italy
| | - Antonio Boccaccio
- Department of Mechanics, Mathematics and Management, Polytechnic University of Bari, Bari, Italy
| | - Antonio Emmanuele Uva
- Department of Mechanics, Mathematics and Management, Polytechnic University of Bari, Bari, Italy
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Francesca Spirito
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Mario Dioguardi
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Luigi Santacroce
- Department of Interdisciplinary Medicine, Microbiology and Virology Unit, University of Bari Aldo Moro, Bari, Apulia, Italy
| | - Michele Di Cosola
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Stefania Cantore
- Department of Mechanics, Mathematics and Management, Polytechnic University of Bari, Bari, Italy
- Independent Researcher, Sorriso & Benessere - Ricerca e Clinica, Bari, Italy
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Andrea Ballini
- Department of Mechanics, Mathematics and Management, Polytechnic University of Bari, Bari, Italy
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
6
|
Application of Collagen-Based Hydrogel in Skin Wound Healing. Gels 2023; 9:gels9030185. [PMID: 36975634 PMCID: PMC10048510 DOI: 10.3390/gels9030185] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
The repair of skin injury has always been a concern in the medical field. As a kind of biopolymer material with a special network structure and function, collagen-based hydrogel has been widely used in the field of skin injury repair. In this paper, the current research and application status of primal hydrogels in the field of skin repair in recent years are comprehensively reviewed. Starting from the structure and properties of collagen, the preparation, structural properties, and application of collagen-based hydrogels in skin injury repair are emphatically described. Meanwhile, the influences of collagen types, preparation methods, and crosslinking methods on the structural properties of hydrogels are emphatically discussed. The future and development of collagen-based hydrogels are prospected, which is expected to provide reference for the research and application of collagen-based hydrogels for skin repair in the future.
Collapse
|