1
|
Casado C, Cepeda-Franco C, Pereira Arenas S, Suarez MD, Gómez-Bravo MÁ, Alaminos M, Chato-Astrain J, Fernández-Muñoz B, Campos-Cuerva R. Cryopreserved nanostructured fibrin-agarose hydrogels are efficient and safe hemostatic agents. Sci Rep 2024; 14:19411. [PMID: 39169092 PMCID: PMC11339259 DOI: 10.1038/s41598-024-70456-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024] Open
Abstract
Uncontrolled bleeding during surgery is associated with high mortality and prolonged hospital stay, necessitating the use of hemostatic agents. Fibrin sealant patches offer an efficient solution to achieve hemostasis and improve patient outcomes in liver resection surgery. We have previously demonstrated the efficacy of a nanostructured fibrin-agarose hydrogel (NFAH). However, for the widespread distribution and commercialization of the product, it is necessary to develop an optimal preservation method that allows for prolonged stability and facilitates storage and distribution. We investigated cryopreservation as a potential method for preserving NFAH using trehalose. Structural changes in cryopreserved NFAH (Cryo-NFAH) were investigated and comparative in vitro and in vivo efficacy and safety studies were performed with freshly prepared NFAH. We also examined the long-term safety of Cryo-NFAH versus TachoSil in a rat partial hepatectomy model, including time to hemostasis, intra-abdominal adhesion, hepatic hematoma, inflammatory factors, histopathological variables, temperature and body weight, hemocompatibility and cytotoxicity. Structural analyses demonstrated that Cryo-NFAH retained most of its macro- and microscopic properties after cryopreservation. Likewise, hemostatic efficacy assays showed no significant differences with fresh NFAH. Safety evaluations indicated that Cryo-NFAH had a similar overall profile to TachoSil up to 40 days post-surgery in rats. In addition, Cryo-NFAH demonstrated superior hemostatic efficacy compared with TachoSil while also demonstrating lower levels of erythrolysis and cytotoxicity than both TachoSil and other commercially available hemostatic agents. These results indicate that Cryo-NFAH is highly effective hemostatic patch with a favorable safety and tolerability profile, supporting its potential for clinical use.
Collapse
Affiliation(s)
- Carlos Casado
- Unidad de Producción y Reprogramación Celular, Red Andaluza de Diseño y traslación de Terapias Avanzadas-RAdytTA, Fundación Pública Andaluza Progreso y Salud (FPS), Av. Américo Vespucio 15, 41092, Seville, Spain
| | - Carmen Cepeda-Franco
- Instituto de Biomedicina de Sevilla/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Transplantation and Hepatobiliary Surgery Unit, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Sheila Pereira Arenas
- Instituto de Biomedicina de Sevilla/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Transplantation and Hepatobiliary Surgery Unit, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Maria Dolores Suarez
- Servicio de Anatomía Patológica, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Miguel Ángel Gómez-Bravo
- Instituto de Biomedicina de Sevilla/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Transplantation and Hepatobiliary Surgery Unit, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Miguel Alaminos
- Tissue Engineering Group, Facultad de Medicina Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria Ibs. Granada, Granada, Spain
| | - Jesús Chato-Astrain
- Tissue Engineering Group, Facultad de Medicina Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria Ibs. Granada, Granada, Spain
| | - Beatriz Fernández-Muñoz
- Unidad de Producción y Reprogramación Celular, Red Andaluza de Diseño y traslación de Terapias Avanzadas-RAdytTA, Fundación Pública Andaluza Progreso y Salud (FPS), Av. Américo Vespucio 15, 41092, Seville, Spain
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Rafael Campos-Cuerva
- Unidad de Producción y Reprogramación Celular, Red Andaluza de Diseño y traslación de Terapias Avanzadas-RAdytTA, Fundación Pública Andaluza Progreso y Salud (FPS), Av. Américo Vespucio 15, 41092, Seville, Spain.
- Instituto de Biomedicina de Sevilla/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.
- Centro de Transfusiones, Tejidos y Células de Sevilla, Seville, Spain.
| |
Collapse
|
2
|
Berasain J, Ávila-Fernández P, Cárdenas-Pérez R, Cànaves-Llabrés AI, Etayo-Escanilla M, Alaminos M, Carriel V, García-García ÓD, Chato-Astrain J, Campos F. Genipin crosslinking promotes biomechanical reinforcement and pro-regenerative macrophage polarization in bioartificial tubular substitutes. Biomed Pharmacother 2024; 174:116449. [PMID: 38518607 DOI: 10.1016/j.biopha.2024.116449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/07/2024] [Accepted: 03/15/2024] [Indexed: 03/24/2024] Open
Abstract
Traumatic nerve injuries are nowadays a significant clinical challenge and new substitutes with adequate biological and mechanical properties are in need. In this context, fibrin-agarose hydrogels (FA) have shown the possibility to generate tubular scaffolds with promising results for nerve repair. However, to be clinically viable, these scaffolds need to possess enhanced mechanical properties. In this line, genipin (GP) crosslinking has demonstrated to improve biomechanical properties with good biological properties compared to other crosslinkers. In this study, we evaluated the impact of different GP concentrations (0.05, 0.1 and 0.2% (m/v)) and reaction times (6, 12, 24, 72 h) on bioartificial nerve substitutes (BNS) consisting of nanostructured FA scaffolds. First, crosslinked BNS were studied histologically, ultrastructurally and biomechanically and then, its biocompatibility and immunomodulatory effects were ex vivo assessed with a macrophage cell line. Results showed that GP was able to improve the biomechanical resistance of BNS, which were dependent on both the GP treatment time and concentration without altering the structure. Moreover, biocompatibility analyses on macrophages confirmed high cell viability and a minimal reduction of their metabolic activity by WST-1. In addition, GP-crosslinked BNS effectively directed macrophage polarization from a pro-inflammatory (M1) towards a pro-regenerative (M2) phenotype, which was in line with the cytokines release profile. In conclusion, this study considers time and dose-dependent effects of GP in FA substitutes which exhibited increased biomechanical properties while reducing immunogenicity and promoting pro-regenerative macrophage shift. These tubular substitutes could be useful for nerve application or even other tissue engineering applications such as urethra.
Collapse
Affiliation(s)
- Jone Berasain
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Spain; Postgraduate Master Program in Tissue Engineering and Advanced Therapies, University of Granada, Spain
| | - Paula Ávila-Fernández
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Spain
| | - Rocío Cárdenas-Pérez
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Spain; Postgraduate Master Program in Tissue Engineering and Advanced Therapies, University of Granada, Spain
| | - Antoni Ignasi Cànaves-Llabrés
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Spain; Postgraduate Master Program in Tissue Engineering and Advanced Therapies, University of Granada, Spain
| | - Miguel Etayo-Escanilla
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Spain
| | - Miguel Alaminos
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Spain
| | - Víctor Carriel
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Spain
| | - Óscar Darío García-García
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Spain.
| | - Jesús Chato-Astrain
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Spain.
| | - Fernando Campos
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Spain
| |
Collapse
|
3
|
Ávila-Fernández P, Etayo-Escanilla M, Sánchez-Porras D, Blanco-Elices C, Campos F, Carriel V, García-García ÓD, Chato-Astrain J. A Novel In Vitro Pathological Model for Studying Neural Invasion in Non-Melanoma Skin Cancer. Gels 2024; 10:252. [PMID: 38667671 PMCID: PMC11049316 DOI: 10.3390/gels10040252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/26/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Neural Invasion (NI) is a key pathological feature of cancer in the colonization of distant tissues, and its underlying biological mechanisms are still scarcely known. The complex interactions between nerve and tumor cells, along with the stroma, make it difficult to reproduce this pathology in effective study models, which in turn has limited the understanding of NI pathogenesis. In this study, we have designed a three-dimensional model of NI squamous cell carcinoma combining human epidermoid carcinoma cells (hECCs) with a complete peripheral nerve segment encapsulated in a fibrine-agarose hydrogel. We recreated two vital processes of NI: a pre-invasive NI model in which hECCs were seeded on the top of the nerve-enriched stroma, and an invasive NI model in which cancer cells were immersed with the nerve in the hydrogel. Histological, histochemical and immunohistochemical analyses were performed to validate the model. Results showed that the integration of fibrin-agarose advanced hydrogel with a complete nerve structure and hECCs successfully generated an environment in which tumor cells and nerve components coexisted. Moreover, this model correctly preserved components of the neural extracellular matrix as well as allowing the proliferation and migration of cells embedded in hydrogel. All these results suggest the suitability of the model for the study of the mechanisms underlaying NI.
Collapse
Affiliation(s)
- Paula Ávila-Fernández
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; (P.Á.-F.); (M.E.-E.); (D.S.-P.); (C.B.-E.); (F.C.); (J.C.-A.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
- Doctoral Program in Biomedicine, University of Granada, 18071 Granada, Spain
| | - Miguel Etayo-Escanilla
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; (P.Á.-F.); (M.E.-E.); (D.S.-P.); (C.B.-E.); (F.C.); (J.C.-A.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
| | - David Sánchez-Porras
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; (P.Á.-F.); (M.E.-E.); (D.S.-P.); (C.B.-E.); (F.C.); (J.C.-A.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
| | - Cristina Blanco-Elices
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; (P.Á.-F.); (M.E.-E.); (D.S.-P.); (C.B.-E.); (F.C.); (J.C.-A.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
| | - Fernando Campos
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; (P.Á.-F.); (M.E.-E.); (D.S.-P.); (C.B.-E.); (F.C.); (J.C.-A.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
| | - Víctor Carriel
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; (P.Á.-F.); (M.E.-E.); (D.S.-P.); (C.B.-E.); (F.C.); (J.C.-A.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
| | - Óscar Darío García-García
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; (P.Á.-F.); (M.E.-E.); (D.S.-P.); (C.B.-E.); (F.C.); (J.C.-A.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
| | - Jesús Chato-Astrain
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; (P.Á.-F.); (M.E.-E.); (D.S.-P.); (C.B.-E.); (F.C.); (J.C.-A.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
| |
Collapse
|
4
|
Ibáñez-Cortés M, Martín-Piedra MÁ, Blanco-Elices C, García-García ÓD, España-López A, Fernández-Valadés R, Sánchez-Quevedo MDC, Alaminos M, Chato-Astrain J, Garzón I. Histological characterization of the human masticatory oral mucosa. A histochemical and immunohistochemical study. Microsc Res Tech 2023; 86:1712-1724. [PMID: 37650503 DOI: 10.1002/jemt.24398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/19/2023] [Accepted: 08/06/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Histology of human oral mucosa is closely related with its function and anatomical location, and a proper characterization of the human masticatory oral mucosa could be very useful in periodontal pathology. OBJECTIVE In the present work, we have carried out a comprehensive study in order to determine the main histological features of parakeratinized (POM) and orthokeratinized (OOM) masticatory human oral mucosa using light and electron microscopy. METHODS To perform this, we have used several histological, histochemical and immunohistochemical methods to detect key markets at the epithelial, basement membrane and connective tissue levels. RESULTS Our results demonstrated that POM and OOM share many histological similarities, as expected. However, important differences were observed at the epithelial layer of POM, that was significantly thicker than the epithelial layer found in OOM, especially due to a higher number of cells at the stratum spinosum. The expression pattern of CK10 and filaggrin revealed intense signal expression in OOM as compared to POM. Collagen and proteoglycans were more abundant in OOM stroma than in POM. No differences were found for blood vessels and basement membrane. CONCLUSION These results may contribute to a better understanding of the pathological conditions affecting the human masticatory oral mucosa. In addition, these findings could be useful for the generation of different types of oral mucosa by tissue engineering techniques. RESEARCH HIGHLIGHTS Microscopical features of parakeratinized and orthokeratinized masticatory human oral mucosa showed important differences at both, epithelial and stromal levels. Parakeratinized masticatory human oral mucosa exert thicker epithelial layer, especially, at the stratum spinosum in comparison to orthokeratinized human oral mucosa. Cytokeratin 10 and filaggrin human epithelial markers were intensively expressed in orthokeratinized masticatory human oral mucosa in comparison to parakeratinized masticatory human oral mucosa. At the stromal level, orthokeratinized masticatory human oral mucosa exhibit higher levels of collagen and proteoglycans than parakeratinized masticatory oral mucosa. The deep knowledge of histological features of masticatory oral mucosa could lead to a better understanding of oral mucosa pathology and advanced treatments.
Collapse
Affiliation(s)
- Miguel Ibáñez-Cortés
- Tissue Engineering Group, Department of Histology, University of Granada, Granada, Spain
- Doctoral Program in Biomedicine, University of Granada, Granada, Spain
| | - Miguel Ángel Martín-Piedra
- Tissue Engineering Group, Department of Histology, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| | - Cristina Blanco-Elices
- Tissue Engineering Group, Department of Histology, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| | - Óscar Darío García-García
- Tissue Engineering Group, Department of Histology, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| | - Antonio España-López
- Craniofacial Malformations and Cleft Lip and Palate Management Unit, University Hospital Virgen de las Nieves, Granada, Spain
| | - Ricardo Fernández-Valadés
- Tissue Engineering Group, Department of Histology, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
- Division of Pediatric Surgery, University Hospital Virgen de las Nieves, Granada, Spain
| | - María Del Carmen Sánchez-Quevedo
- Tissue Engineering Group, Department of Histology, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| | - Miguel Alaminos
- Tissue Engineering Group, Department of Histology, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| | - Jesús Chato-Astrain
- Tissue Engineering Group, Department of Histology, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| | - Ingrid Garzón
- Tissue Engineering Group, Department of Histology, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| |
Collapse
|
5
|
Kang MS, Jo HJ, Jang HJ, Kim B, Jung TG, Han DW. Recent Advances in Marine Biomaterials Tailored and Primed for the Treatment of Damaged Soft Tissues. Mar Drugs 2023; 21:611. [PMID: 38132932 PMCID: PMC10744877 DOI: 10.3390/md21120611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
The inherent self-repair abilities of the body often fall short when it comes to addressing injuries in soft tissues like skin, nerves, and cartilage. Tissue engineering and regenerative medicine have concentrated their research efforts on creating natural biomaterials to overcome this intrinsic healing limitation. This comprehensive review delves into the advancement of such biomaterials using substances and components sourced from marine origins. These marine-derived materials offer a sustainable alternative to traditional mammal-derived sources, harnessing their advantageous biological traits including sustainability, scalability, reduced zoonotic disease risks, and fewer religious restrictions. The use of diverse engineering methodologies, ranging from nanoparticle engineering and decellularization to 3D bioprinting and electrospinning, has been employed to fabricate scaffolds based on marine biomaterials. Additionally, this review assesses the most promising aspects in this field while acknowledging existing constraints and outlining necessary future steps for advancement.
Collapse
Affiliation(s)
- Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea; (M.S.K.); (H.J.J.); (H.J.J.)
| | - Hyo Jung Jo
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea; (M.S.K.); (H.J.J.); (H.J.J.)
| | - Hee Jeong Jang
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea; (M.S.K.); (H.J.J.); (H.J.J.)
| | - Bongju Kim
- Dental Life Science Research Institute/Innovation Research & Support Center for Dental Science, Seoul National University Dental Hospital, Seoul 03080, Republic of Korea;
| | - Tae Gon Jung
- Medical Device Development Center, Osong Medical Innovation Foundation, Cheonju-si 28160, Republic of Korea
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea; (M.S.K.); (H.J.J.); (H.J.J.)
- Institute of Nano-Bio Convergence, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
6
|
Blanco-Elices C, Oruezabal RI, Sánchez-Porras D, Chato-Astrain J, Campos F, Alaminos M, Garzón I, Campos A. A novel 3D biofabrication strategy to improve cell proliferation and differentiation of human Wharton's jelly mesenchymal stromal cells for cell therapy and tissue engineering. Front Bioeng Biotechnol 2023; 11:1235161. [PMID: 37636000 PMCID: PMC10448765 DOI: 10.3389/fbioe.2023.1235161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/04/2023] [Indexed: 08/29/2023] Open
Abstract
Purpose: Obtaining sufficient numbers of cells in a short time is a major goal of cell culturing in cell therapy and tissue engineering. However, current bidimensional (2D) culture methods are associated to several limitations, including low efficiency and the loss of key cell differentiation markers on cultured cells. Methods: In the present work, we have designed a novel biofabrication method based on a three-dimensional (3D) culture system (FIBRIAGAR-3D). Human Wharton's jelly mesenchymal stromal cells (HWJSC) were cultured in 3D using 100%, 75%, 50%, and 25% concentrations of fibrin-agarose biomaterials (FA100, FA75, FA50 and FA25 group) and compared with control cells cultured using classical 2D systems (CTR-2D). Results: Our results showed a significant increase in the number of cells generated after 7 days of culture, with cells displaying numerous expansions towards the biomaterial, and a significant overexpression of the cell proliferation marker KI67 was found for the FA75 and FA100 groups. TUNEL and qRT-PCR analyses demonstrated that the use of FIBRIAGAR-3D was not associated with an induction of apoptosis by cultured cells. Instead, the 3D system retained the expression of typical phenotypic markers of HWJSC, including CD73, CD90, CD105, NANOG and OCT4, and biosynthesis markers such as types-I and IV collagens, with significant increase of some of these markers, especially in the FA100 group. Finally, our analysis of 8 cell signaling molecules revealed a significant decrease of GM-CSF, IFN-g, IL2, IL4, IL6, IL8, and TNFα, suggesting that the 3D culture system did not induce the expression of pro-inflammatory molecules. Conclusion: These results confirm the usefulness of FIBRIAGAR-3D culture systems to increase cell proliferation without altering cell phenotype of immunogenicity and opens the door to the possibility of using this novel biofabrication method in cell therapy and tissue engineering of the human cornea, oral mucosa, skin, urethra, among other structures.
Collapse
Affiliation(s)
- Cristina Blanco-Elices
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | | | - David Sánchez-Porras
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Jesús Chato-Astrain
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Fernando Campos
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Miguel Alaminos
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Ingrid Garzón
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Antonio Campos
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| |
Collapse
|