1
|
Piras F, Sogos V, Pollastro F, Appendino G, Rosa A. Arzanol, a natural phloroglucinol α-pyrone, protects HaCaT keratinocytes against H 2O 2-induced oxidative stress, counteracting cytotoxicity, reactive oxygen species generation, apoptosis, and mitochondrial depolarization. J Appl Toxicol 2024; 44:720-732. [PMID: 38152000 DOI: 10.1002/jat.4570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/08/2023] [Accepted: 11/22/2023] [Indexed: 12/29/2023]
Abstract
Skin oxidative stress results in structural damage, leading to premature senescence, and pathological conditions such as inflammation and cancer. The plant-derived prenylated pyrone-phloroglucinol heterodimer arzanol, isolated from Helichrysum italicum ssp. microphyllum (Willd.) Nyman aerial parts, exhibits anti-inflammatory, anticancer, antimicrobial, and antioxidant activities. This study explored the arzanol protection against hydrogen peroxide (H2O2) induced oxidative damage in HaCaT human keratinocytes in terms of its ability to counteract cytotoxicity, reactive oxygen species (ROS) generation, apoptosis, and mitochondrial membrane depolarization. Arzanol safety on HaCaT cells was preliminarily examined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and microscopic observation. The arzanol pre-incubation (5-100 μM, for 24 h) did not induce cytotoxicity and morphological alterations. The phloroglucinol, at 50 μM, significantly protected keratinocytes against cytotoxicity induced by 2 h-incubation with 2.5 and 5 mM H2O2, decreased cell ROS production induced by 1 h-exposure to all tested H2O2 concentrations (0.5-5 mM), as determined by the 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) assay, and lipid peroxidation (thiobarbituric acid reactive substances [TBARS] method). The 2-h incubation of keratinocytes with H2O2 determined a significant increase of apoptotic cells versus control cells, evaluated by NucView® 488 assay, from the dose of 2.5 mM. Moreover, an evident mitochondrial membrane potential depolarization, monitored by fluorescent mitochondrial dye MitoView™ 633, was assessed at 5 mM H2O2. Arzanol pre-treatment (50 μM) exerted a strong significant protective effect against apoptosis, preserving the mitochondrial membrane potential of HaCaT cells at the highest H2O2 concentrations. Our results validate arzanol as an antioxidant agent for the prevention/treatment of skin oxidative-related disorders, qualifying its potential use for cosmeceutical and pharmaceutical applications.
Collapse
Affiliation(s)
- Franca Piras
- Department of Biomedical Sciences, University of Cagliari, Monserrato, 09042, Italy
| | - Valeria Sogos
- Department of Biomedical Sciences, University of Cagliari, Monserrato, 09042, Italy
| | - Federica Pollastro
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Novara, 28100, Italy
- PlantaChem S.r.l.s, Novara, 28100, Italy
| | - Giovanni Appendino
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Novara, 28100, Italy
| | - Antonella Rosa
- Department of Biomedical Sciences, University of Cagliari, Monserrato, 09042, Italy
| |
Collapse
|
2
|
Rahman A, Rehmani R, Pirvu DG, Huang SM, Puri S, Arcos M. Unlocking the Therapeutic Potential of Marine Collagen: A Scientific Exploration for Delaying Skin Aging. Mar Drugs 2024; 22:159. [PMID: 38667776 PMCID: PMC11050892 DOI: 10.3390/md22040159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Aging is closely associated with collagen degradation, impacting the structure and strength of the muscles, joints, bones, and skin. The continuous aging of the skin is a natural process that is influenced by extrinsic factors such as UV exposure, dietary patterns, smoking habits, and cosmetic supplements. Supplements that contain collagen can act as remedies that help restore vitality and youth to the skin, helping combat aging. Notably, collagen supplements enriched with essential amino acids such as proline and glycine, along with marine fish collagen, have become popular for their safety and effectiveness in mitigating the aging process. To compile the relevant literature on the anti-aging applications of marine collagen, a search and analysis of peer-reviewed papers was conducted using PubMed, Cochrane Library, Web of Science, and Embase, covering publications from 1991 to 2024. From in vitro to in vivo experiments, the reviewed studies elucidate the anti-aging benefits of marine collagen, emphasizing its role in combating skin aging by minimizing oxidative stress, photodamage, and the appearance of wrinkles. Various bioactive marine peptides exhibit diverse anti-aging properties, including free radical scavenging, apoptosis inhibition, lifespan extension in various organisms, and protective effects in aging humans. Furthermore, the topical application of hyaluronic acid is discussed as a mechanism to increase collagen production and skin moisture, contributing to the anti-aging effects of collagen supplementation. The integration of bio-tissue engineering in marine collagen applications is also explored, highlighting its proven utility in skin healing and bone regeneration applications. However, limitations to the scope of its application exist. Thus, by delving into these nuanced considerations, this review contributes to a comprehensive understanding of the potential and challenges associated with marine collagen in the realm of anti-aging applications.
Collapse
Affiliation(s)
- Azizur Rahman
- Centre for Climate Change Research (CCCR), University of Toronto, ONRamp at UTE, Toronto, ON M5G 1L5, Canada; (R.R.); (D.G.P.); (S.M.H.); (S.P.); (M.A.)
- A.R. Environmental Solutions, ICUBE-University of Toronto, Mississauga, ON L5L 1C6, Canada
- AR Biotech Canada, Toronto, ON M2H 3P8, Canada
| | - Rameesha Rehmani
- Centre for Climate Change Research (CCCR), University of Toronto, ONRamp at UTE, Toronto, ON M5G 1L5, Canada; (R.R.); (D.G.P.); (S.M.H.); (S.P.); (M.A.)
- A.R. Environmental Solutions, ICUBE-University of Toronto, Mississauga, ON L5L 1C6, Canada
- Department of Biological Anthropology, University of Toronto, Mississauga, ON L5L 1C6, Canada
| | - Diana Gabby Pirvu
- Centre for Climate Change Research (CCCR), University of Toronto, ONRamp at UTE, Toronto, ON M5G 1L5, Canada; (R.R.); (D.G.P.); (S.M.H.); (S.P.); (M.A.)
- A.R. Environmental Solutions, ICUBE-University of Toronto, Mississauga, ON L5L 1C6, Canada
| | - Siqi Maggie Huang
- Centre for Climate Change Research (CCCR), University of Toronto, ONRamp at UTE, Toronto, ON M5G 1L5, Canada; (R.R.); (D.G.P.); (S.M.H.); (S.P.); (M.A.)
- A.R. Environmental Solutions, ICUBE-University of Toronto, Mississauga, ON L5L 1C6, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, St. George, Toronto, ON M5S 3B2, Canada
| | - Simron Puri
- Centre for Climate Change Research (CCCR), University of Toronto, ONRamp at UTE, Toronto, ON M5G 1L5, Canada; (R.R.); (D.G.P.); (S.M.H.); (S.P.); (M.A.)
- A.R. Environmental Solutions, ICUBE-University of Toronto, Mississauga, ON L5L 1C6, Canada
| | - Mateo Arcos
- Centre for Climate Change Research (CCCR), University of Toronto, ONRamp at UTE, Toronto, ON M5G 1L5, Canada; (R.R.); (D.G.P.); (S.M.H.); (S.P.); (M.A.)
- A.R. Environmental Solutions, ICUBE-University of Toronto, Mississauga, ON L5L 1C6, Canada
- Computer Science, Mathematics and Statistics, University of Toronto, Mississauga, ON L5L 1C6, Canada
| |
Collapse
|