1
|
Kravchenko A, Krylova N, Iunikhina O, Anastyuk S, Isakov V, Glazunov V, Volod'ko A, Kitan' S, Shchelkanov M, Yermak I. Structure and properties of polysaccharides from tetrasporophytes of Mazzaella parksii. Int J Biol Macromol 2025; 300:140178. [PMID: 39848375 DOI: 10.1016/j.ijbiomac.2025.140178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/19/2024] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
The structure and anti-SARS-CoV-2 activity of sulfated polysaccharides (Mzpt) obtained in high yield (60 %) from tetrasporophytes of Mazzaella parksii were studied. Stepwise fractionation with KCl showed that Mzpt consisted of eight (MzptF1-MzptF8) carrageenans fractions, differing in structure and molecular weight. The yield of non-gelling MzptF8 was 58.1 % of the original Mzpt. According to IR and NMR spectroscopies, gelling MzptF1 and MzptF2 were mainly kappa/iota/nu-carrageenans. MzptF7 included mainly lambda-carrageenan and in smaller quantities kappa-, iota-, mu- and nu-carrageenans. MzptF8 had a complex composition and included gamma-carrageenan, unsulfated carrageenan, probably, delta-carrageenan and also structural elements of xi-, psi- and omicron-carrageenans. According to atomic force microscopy data, MzptF8 involved several polymer chains associated with each other in a disordered structure, in contrast to MzptF2, which formed three-dimensional networks. Unlike ribavirin and remdesivir, Mzpt was not cytotoxic to Vero E6 cells at concentrations >2000 μg mL-1. Mzpt was shown to inhibit SARS-CoV-2 replication in a dose-dependent manner in CPE inhibition and RT-PCR assays. IC50 was 92.0 μg mL-1, SI - 22. At concentration 250 μg mL-1, Mzpt caused the highest reduction in viral RNA levels with an inhibition coefficient of 31.1 % and exhibited significant inhibition of the early stages of virus-cell interaction.
Collapse
Affiliation(s)
- Anna Kravchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 100 Let Vladivostoku Prosp., 159, 690022 Vladivostok, Russian Federation.
| | - Natalia Krylova
- G.P. Somov Institute of Epidemiology and Microbiology, Rospotrebnadzor, Selskaya St., 1, 690087 Vladivostok, Russian Federation
| | - Olga Iunikhina
- G.P. Somov Institute of Epidemiology and Microbiology, Rospotrebnadzor, Selskaya St., 1, 690087 Vladivostok, Russian Federation
| | - Stanislav Anastyuk
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 100 Let Vladivostoku Prosp., 159, 690022 Vladivostok, Russian Federation
| | - Vladimir Isakov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 100 Let Vladivostoku Prosp., 159, 690022 Vladivostok, Russian Federation
| | - Valery Glazunov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 100 Let Vladivostoku Prosp., 159, 690022 Vladivostok, Russian Federation
| | - Alexandra Volod'ko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 100 Let Vladivostoku Prosp., 159, 690022 Vladivostok, Russian Federation
| | - Sergey Kitan'
- Institute of Automation and Control Processes, Far Eastern Branch of the Russian Academy of Sciences, Radio St., 5, 690041 Vladivostok, Russian Federation
| | - Mikhail Shchelkanov
- G.P. Somov Institute of Epidemiology and Microbiology, Rospotrebnadzor, Selskaya St., 1, 690087 Vladivostok, Russian Federation
| | - Irina Yermak
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 100 Let Vladivostoku Prosp., 159, 690022 Vladivostok, Russian Federation
| |
Collapse
|
2
|
Lesgourgues M, Latire T, Terme N, Douzenel P, Leschiera R, Lebonvallet N, Bourgougnon N, Bedoux G. Ultrasound Depolymerization and Characterization of Poly- and Oligosaccharides from the Red Alga Solieria chordalis (C. Agardh) J. Agardh 1842. Mar Drugs 2024; 22:367. [PMID: 39195483 DOI: 10.3390/md22080367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 08/29/2024] Open
Abstract
Red seaweed carrageenans are frequently used in industry for its texturizing properties and have demonstrated antiviral activities that can be used in human medicine. However, their high viscosity, high molecular weight, and low skin penetration limit their use. Low-weight carrageenans have a reduced viscosity and molecular weight, enhancing their biological properties. In this study, ι-carrageenan from Solieria chordalis, extracted using hot water and dialyzed, was depolymerized using hydrogen peroxide and ultrasound. Ultrasonic depolymerization yielded fractions of average molecular weight (50 kDa) that were rich in sulfate groups (16% and 33%) compared to those from the hydrogen peroxide treatment (7 kDa, 6% and 9%). The potential bioactivity of the polysaccharides and low-molecular-weight (LMW) fractions were assessed using WST-1 and LDH assays for human fibroblast viability, proliferation, and cytotoxicity. The depolymerized fractions did not affect cell proliferation and were not cytotoxic. This research highlights the diversity in the biochemical composition and lack of cytotoxicity of Solieria chordalis polysaccharides and LMW fractions produced by a green (ultrasound) depolymerization method.
Collapse
Affiliation(s)
- Mathilde Lesgourgues
- Laboratoire de Biotechnologie et Chimie Marines (LBCM), EMR CNRS 6076, IUEM, Université Bretagne Sud, 56000 Vannes, France
- Laboratoire d'efficacité cosmétique (E-COS), Université Catholique de l'Ouest Bretagne Nord, 22200 Guingamp, France
| | - Thomas Latire
- Laboratoire de Biotechnologie et Chimie Marines (LBCM), EMR CNRS 6076, IUEM, Université Bretagne Sud, 56000 Vannes, France
- Laboratoire d'efficacité cosmétique (E-COS), Université Catholique de l'Ouest Bretagne Nord, 22200 Guingamp, France
| | - Nolwenn Terme
- Laboratoire de Biotechnologie et Chimie Marines (LBCM), EMR CNRS 6076, IUEM, Université Bretagne Sud, 56000 Vannes, France
- Laboratoire d'efficacité cosmétique (E-COS), Université Catholique de l'Ouest Bretagne Nord, 22200 Guingamp, France
| | - Philippe Douzenel
- Laboratoire de Biotechnologie et Chimie Marines (LBCM), EMR CNRS 6076, IUEM, Université Bretagne Sud, 56000 Vannes, France
| | - Raphaël Leschiera
- Laboratoire Interaction Epithéliums Neurones (LIEN), UR 4685, Université Bretagne Occidentale, 29200 Brest, France
| | - Nicolas Lebonvallet
- Laboratoire Interaction Epithéliums Neurones (LIEN), UR 4685, Université Bretagne Occidentale, 29200 Brest, France
| | - Nathalie Bourgougnon
- Laboratoire de Biotechnologie et Chimie Marines (LBCM), EMR CNRS 6076, IUEM, Université Bretagne Sud, 56000 Vannes, France
| | - Gilles Bedoux
- Laboratoire de Biotechnologie et Chimie Marines (LBCM), EMR CNRS 6076, IUEM, Université Bretagne Sud, 56000 Vannes, France
| |
Collapse
|
3
|
Bhattacharyya S, Tobacman JK. SARS-CoV-2 spike protein-ACE2 interaction increases carbohydrate sulfotransferases and reduces N-acetylgalactosamine-4-sulfatase by p38 MAPK. Signal Transduct Target Ther 2024; 9:39. [PMID: 38355690 PMCID: PMC10866996 DOI: 10.1038/s41392-024-01741-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/04/2023] [Accepted: 12/18/2023] [Indexed: 02/16/2024] Open
Abstract
Immunostaining in lungs of patients who died with COVID-19 infection showed increased intensity and distribution of chondroitin sulfate and decline in N-acetylgalactostamine-4-sulfatase (Arylsulfatase B; ARSB). To explain these findings, human small airway epithelial cells were exposed to the SARS-CoV-2 spike protein receptor binding domain (SPRBD) and transcriptional mechanisms were investigated. Phospho-p38 MAPK and phospho-SMAD3 increased following exposure to the SPRBD, and their inhibition suppressed the promoter activation of the carbohydrate sulfotransferases CHST15 and CHST11, which contributed to chondroitin sulfate biosynthesis. Decline in ARSB was mediated by phospho-38 MAPK-induced N-terminal Rb phosphorylation and an associated increase in Rb-E2F1 binding and decline in E2F1 binding to the ARSB promoter. The increases in chondroitin sulfotransferases were inhibited when treated with phospho-p38-MAPK inhibitors, SMAD3 (SIS3) inhibitors, as well as antihistamine desloratadine and antibiotic monensin. In the mouse model of carrageenan-induced systemic inflammation, increases in phospho-p38 MAPK and expression of CHST15 and CHST11 and declines in DNA-E2F binding and ARSB expression occurred in the lung, similar to the observed effects in this SPRBD model of COVID-19 infection. Since accumulation of chondroitin sulfates is associated with fibrotic lung conditions and diffuse alveolar damage, increased attention to p38-MAPK inhibition may be beneficial in ameliorating Covid-19 infections.
Collapse
Affiliation(s)
- Sumit Bhattacharyya
- Jesse Brown VA Medical Center and University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Joanne K Tobacman
- Jesse Brown VA Medical Center and University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
4
|
James J, Verma M, Sharma N. Nanotechnology-driven improvisation of red algae-derived carrageenan for industrial and bio-medical applications. World J Microbiol Biotechnol 2023; 40:4. [PMID: 37923917 DOI: 10.1007/s11274-023-03787-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/01/2023] [Indexed: 11/06/2023]
Abstract
Algae biomass has been recognized as feedstock with diverse application including production of biofuel, biofertilizer, animal feed, wastewater treatment and bioremediation. In addition, algae species are a potential reservoir of metabolites and polymers with potential to be utilized for biomedicine, healthcare and industrial purposes. Carrageenan is one such medicinally and industrially significant polysaccharide which is extracted from red algae species (Kappaphycus alvarezii and Eucheuma denticulatum, among the common species). The extraction process of carrageenan is affected by different environmental factors and the source of biomass, which can vary and significantly impact the yield. Diverse applications of carrageenan include hydrogel beads, bio-composites, pharmacological properties, application in cosmetics, food and related industries. Carrageenan biological activities including antioxidant, anti-inflammatory, antimicrobial, and antitumor activities are significantly influenced by sulfation pattern, yield percentage and molecular weight. In addition to natural biomedical potential of carrageenan, synergetic effect of carrageenan- nanocomposites exhibit potential for further improvisation of biomedical applications. Nanotechnology driven bio-composites of carrageenan remarkably improve the quality of films, food packaging, and drug delivery systems. Such nano bio-composites exhibit enhanced stability, biodegradability, and biocompatibility, making them suitable alternatives for drug delivery, wound-healing, and tissue engineering applications. The present work is a comprehensive study to analyze biomedical and other applications of Carrageenan along with underlying mechanism or mode of action along with synergetic application of nanotechnology.
Collapse
Affiliation(s)
- Jerin James
- Department of Biotechnology, School of Applied and Life Sciences, Uttaranchal University, Dehradun, India
| | - Monu Verma
- Department of Food Science and Technology, Graphic Era (Deemed to be University), Dehradun, India
- Water-Energy Nexus Laboratory, Department of Environmental Engineering, University of Seoul, Seoul, 02504, South Korea
| | - Nishesh Sharma
- Department of Biotechnology, School of Applied and Life Sciences, Uttaranchal University, Dehradun, India.
| |
Collapse
|