1
|
Longo C, Pierri C, Trani R, Mercurio M, Nonnis Marzano C, Corriero G, Aguilo-Arce J, Sini V, Massari F, Zambonin C, Vona D, Cotugno P, Ragni R, Masini S, Giangrande A, D'Onghia G, Ferriol P. Toward a green strategy of sponge mariculture and bioactive compounds recovery. Sci Rep 2025; 15:5999. [PMID: 39966515 PMCID: PMC11836350 DOI: 10.1038/s41598-025-90192-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 02/11/2025] [Indexed: 02/20/2025] Open
Abstract
Sponges are benthic filter-feeder invertebrates capable to produce a variety of high value bioactive compounds. Nevertheless, exploitation of sponges as bio-factories requires scalable and sustainable strategies to supply sponge biomass without threatening wild natural populations and to minimize the consumption of toxic organic solvents in metabolites extraction and purification procedures. Sponges farming in integrated facilities nearby fish mariculture cages represents a highly efficient strategy combining the production of sponge biomass with bioremediation. Here we report the results of the in situ rearing of the keratose sponge Sarcotragus spinosulus developed within three years in an innovative Integrated Multi-Trophic Aquaculture system in the Gulf of Taranto (Southern Italy, Mediterranean Sea), capable to supply large-scale sponge biomass with a minimal impact on wild populations. Moreover, we demonstrate the proof of concept that it is possible to produce polyprenyl hydroquinones, selected as well-known bioactive model metabolites, in good yields, high purity degree and low organic solvent consumption, by means of an innovative protocol based on the combination of supercritical carbon dioxide fluid extraction and gel permeation chromatography. Such a combination of eco-friendly techniques paves the way to eco-sustainable supply of bioactive compounds from marine organisms highly profitable in terms of working times, costs, solvents, and energy saving.
Collapse
Affiliation(s)
- Caterina Longo
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona, 4, 70125, Bari, Italy
| | - Cataldo Pierri
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona, 4, 70125, Bari, Italy
| | - Roberta Trani
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona, 4, 70125, Bari, Italy
| | - Maria Mercurio
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona, 4, 70125, Bari, Italy
| | - Carlotta Nonnis Marzano
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona, 4, 70125, Bari, Italy
| | - Giuseppe Corriero
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona, 4, 70125, Bari, Italy
| | - Joseba Aguilo-Arce
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona, 4, 70125, Bari, Italy
| | - Valeria Sini
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona, 4, 70125, Bari, Italy
| | - Federica Massari
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona, 4, 70125, Bari, Italy
| | - Carlo Zambonin
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona, 4, 70125, Bari, Italy
| | - Danilo Vona
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari Aldo Moro, Via Orabona, 4, 70125, Bari, Italy
| | - Pietro Cotugno
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona, 4, 70125, Bari, Italy.
| | - Roberta Ragni
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona, 4, 70125, Bari, Italy.
| | - Serena Masini
- ECOPAN SRL, Viale Virgilio, 142, 74121, Taranto, Italy
| | - Adriana Giangrande
- Department of Biological and Environmental Sciences and Technologies, University of Salento, S.P. 6 Lecce, 73100, Monteroni, Lecce, Italy
| | - Gianfranco D'Onghia
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona, 4, 70125, Bari, Italy
| | - Pere Ferriol
- Interdisciplinary Ecology Group, Department of Biology, University of Balearic Islands, Car. de Valldemossa, km 7.5, 07122, Palma de Mallorca, Illes Balears, Spain
| |
Collapse
|
2
|
Cahyani NKD, Kasanah N, Kurnia DS, Hamann MT. Profiling Prokaryotic Communities and Aaptamines of Sponge Aaptos suberitoides from Tulamben, Bali. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:1158-1175. [PMID: 38008858 PMCID: PMC11329227 DOI: 10.1007/s10126-023-10268-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 11/04/2023] [Indexed: 11/28/2023]
Abstract
Sponges (Porifera) harbor a diversity of microorganisms that contribute largely to the production a vast array of bioactive compounds. The microorganisms associated with sponge have an important impact on the chemical diversity of the natural products. Herein, our study focuses on an Aaptos suberitoides commonly found in Indonesia. The objective of this study was to investigate the profile of prokaryotic community and the presence of aaptamine metabolites in sponge Aaptos suberitoides. Sponges were collected from two site locations (Liberty Wreck and Drop Off) in Tulamben, Bali. The sponges were identified by barcoding DNA cytochrome oxidase subunit I (COI) gene. The profile of prokaryotic composition was investigated by amplifying the 16S rRNA gene using primers 515f and 806r to target the V4 region. The metabolites were analyzed using LC-MS, and dereplication was done to identify the aaptamines and its derivates. The barcoding DNA of the sponges confirmed the identity of samples as Aaptos suberitoides. The prokaryotic communities of samples A. suberitoides were enriched and dominated by taxa Proteobacteria, Chloroflexi, Actinobacteria, and Acidobacteria. The chemical analysis showed that all sponges produce aaptamine and isoaaptamine except A. suberitoides S2421 produce analog of aaptamines. This is the first report on the profile of prokaryotic community and the aaptamine of tropical marine sponges, A. suberitoides, from Tulamben, Bali.
Collapse
Affiliation(s)
- Ni Kadek Dita Cahyani
- Biology Department, Faculty of Science and Mathematics, Diponegoro University, Semarang, Central Java, Indonesia
| | - Noer Kasanah
- Department of Fisheries, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| | - Dewi Sri Kurnia
- Department of Biotechnology, Graduate School, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Mark T Hamann
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
3
|
Iskandar M, Ruiz-Houston KM, Bracco SD, Sharkasi SR, Calabi Villarroel CL, Desai MN, Gerges AG, Ortiz Lopez NA, Xiao Barbero M, German AA, Moluguri VS, Walker SM, Silva Higashi J, Palma JM, Medina DZ, Patel M, Patel P, Valentin M, Diaz AC, Karthaka JP, Santiago AD, Skiles RB, Romero Umana LA, Ungrey MD, Wojtkowiak A, Howard DV, Nurge R, Woods KG, Nanjundan M. Deep-Sea Sponges and Corals off the Western Coast of Florida-Intracellular Mechanisms of Action of Bioactive Compounds and Technological Advances Supporting the Drug Discovery Pipeline. Mar Drugs 2023; 21:615. [PMID: 38132936 PMCID: PMC10744787 DOI: 10.3390/md21120615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
The majority of natural products utilized to treat a diverse array of human conditions and diseases are derived from terrestrial sources. In recent years, marine ecosystems have proven to be a valuable resource of diverse natural products that are generated to defend and support their growth. Such marine sources offer a large opportunity for the identification of novel compounds that may guide the future development of new drugs and therapies. Using the National Oceanic and Atmospheric Administration (NOAA) portal, we explore deep-sea coral and sponge species inhabiting a segment of the U.S. Exclusive Economic Zone, specifically off the western coast of Florida. This area spans ~100,000 km2, containing coral and sponge species at sea depths up to 3000 m. Utilizing PubMed, we uncovered current knowledge on and gaps across a subset of these sessile organisms with regards to their natural products and mechanisms of altering cytoskeleton, protein trafficking, and signaling pathways. Since the exploitation of such marine organisms could disrupt the marine ecosystem leading to supply issues that would limit the quantities of bioactive compounds, we surveyed methods and technological advances that are necessary for sustaining the drug discovery pipeline including in vitro aquaculture systems and preserving our natural ecological community in the future. Collectively, our efforts establish the foundation for supporting future research on the identification of marine-based natural products and their mechanism of action to develop novel drugs and therapies for improving treatment regimens of human conditions and diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Meera Nanjundan
- Department of Molecular Biosciences, University of South Florida, 4202 East Fowler Avenue, ISA2015, Tampa, FL 33620, USA; (M.I.); (K.M.R.-H.); (S.D.B.); (S.R.S.); (C.L.C.V.); (M.N.D.); (A.G.G.); (N.A.O.L.); (M.X.B.); (A.A.G.); (V.S.M.); (S.M.W.); (J.S.H.); (J.M.P.); (D.Z.M.); (M.P.); (P.P.); (M.V.); (A.C.D.); (J.P.K.); (A.D.S.); (R.B.S.); (L.A.R.U.); (M.D.U.); (A.W.); (D.V.H.); (R.N.); (K.G.W.)
| |
Collapse
|
4
|
Devkar HU, Thakur NL, Kaur P. Marine-derived antimicrobial molecules from the sponges and their associated bacteria. Can J Microbiol 2023; 69:1-16. [PMID: 36288610 DOI: 10.1139/cjm-2022-0147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Antimicrobial resistance (AMR) is one of the leading global health issues that demand urgent attention. Very soon the world will have to bear the consequences of increased drug resistance if new anti-infectives are not pumped into the clinical pipeline in a short period. This presses on the need for novel chemical entities, and the marine environment is one such hotspot to look for. The Ocean harbours a variety of organisms, of which from this aspect, "Sponges (Phylum Porifera)" are of particular interest. To tackle the stresses faced due to their sessile and filter-feeding lifestyle, sponges produce various bioactive compounds, which can be tapped for human use. The sponges harbour several microorganisms of different types and in most cases; the microbial symbionts are the actual producers of the bioactive compounds. This review describes the alarming need for the development of new antimicrobials and how marine sponges can contribute to this. Selected antimicrobial compounds from the marine sponges and their associated bacteria have been described. Additionally, measures to tackle the supply problem have been covered, which is the primary obstacle in marine natural product drug discovery.
Collapse
Affiliation(s)
- Heena U Devkar
- CSIR- National Institute of Oceanography, Dona Paula 403004, Goa, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Narsinh L Thakur
- CSIR- National Institute of Oceanography, Dona Paula 403004, Goa, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Parvinder Kaur
- Foundation for Neglected Disease Research, Bangalore 561203, Karnataka, India
| |
Collapse
|
5
|
Liang X, Luo D, Luesch H. Advances in exploring the therapeutic potential of marine natural products. Pharmacol Res 2019; 147:104373. [PMID: 31351913 PMCID: PMC6839689 DOI: 10.1016/j.phrs.2019.104373] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 12/26/2022]
Abstract
Marine natural products represent novel and diverse chemotypes that serve as templates for the discovery and development of therapeutic agents with distinct mechanisms of action. These genetically encoded compounds produced by an evolutionary optimized biosynthetic machinery are usually quite complex and can be difficult to recreate in the laboratory. The isolation from the source organism results in limited amount of material; however, the development of advanced NMR technologies and dereplication strategies has enabled the structure elucidation on small scale. In order to rigorously explore the therapeutic potential of marine natural products and advance them further, the biological characterization has to keep pace with the chemical characterization. The limited marine natural product supply has been a serious challenge for thorough investigation of the biological targets. Several marine drugs have reached the markets or are in clinical trials, where those challenges have been overcome, including through the development of scalable syntheses. However, the identification of mechanisms of action of marine natural products early in the discovery process is potentially game changing, since effectively linking marine natural products to potential therapeutic applications in turn triggers motivation to tackle challenging syntheses and solve the supply problem. An increasing number of sensitive technologies and methods have been developed in recent years, some of which have been successfully applied to marine natural products, increasing the value of these compounds with respect to their biomedical utility. In this review, we discuss advances in overcoming the bottlenecks in marine natural product research, emphasizing on the development and advances of diverse target identification technologies applicable for marine natural product research.
Collapse
Affiliation(s)
- Xiao Liang
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida, 32610, United States
| | - Danmeng Luo
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida, 32610, United States
| | - Hendrik Luesch
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida, 32610, United States.
| |
Collapse
|
6
|
Pozzolini M, Scarfì S, Ghignone S, Mussino F, Vezzulli L, Cerrano C, Giovine M. Molecular characterization and expression analysis of the first Porifera tumor necrosis factor superfamily member and of its putative receptor in the marine sponge Chondrosia reniformis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 57:88-98. [PMID: 26705701 DOI: 10.1016/j.dci.2015.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 12/14/2015] [Accepted: 12/14/2015] [Indexed: 06/05/2023]
Abstract
Here we report the molecular cloning and characterization of the first Tumor Necrosis Factor homologous and of its putative receptor in the marine sponge Chondrosia reniformis: chTNF and chTNFR, respectively. The deduced chTNF amino acid sequence is a type II transmembrane protein containing the typical TNFSF domain. Phylogenetic analysis reveals that chTNF is more related to Chordata TNFs rather than to other invertebrates. chTNF and chTNFR are constitutively expressed both in the ectosome and in the choanosome of the sponge, with higher levels in the ectosome. chTNF and chTNFR mRNAs were monitored in sponge fragmorphs treated with Gram(+) or Gram(-) bacteria. chTNF was significantly upregulated in Gram(+)-treated fragmorphs as compared to controls, while chTNFR was upregulated by both treatments. Finally, the possible chTNF fibrogenic role in sponge fragmorphs was studied by TNF inhibitor treatment measuring fibrillar and non fibrillar collagen gene expression; results indicate that the cytokine is involved in sponge collagen deposition and homeostasis.
Collapse
Affiliation(s)
- Marina Pozzolini
- Department of Earth, Environment and Life Sciences (DiSTAV), University of Genova, Via Pastore 3, 16132, Italy.
| | - Sonia Scarfì
- Department of Earth, Environment and Life Sciences (DiSTAV), University of Genova, Via Pastore 3, 16132, Italy
| | - Stefano Ghignone
- Institute for Sustainable Plant Protection-Turin Unit (CNR), Viale Mattioli 25, 10125 Torino, Italy
| | - Francesca Mussino
- Department of Earth, Environment and Life Sciences (DiSTAV), University of Genova, Via Pastore 3, 16132, Italy
| | - Luigi Vezzulli
- Department of Earth, Environment and Life Sciences (DiSTAV), University of Genova, Via Pastore 3, 16132, Italy
| | - Carlo Cerrano
- Department of Life and Environment Sciences (DiSVA), Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Marco Giovine
- Department of Earth, Environment and Life Sciences (DiSTAV), University of Genova, Via Pastore 3, 16132, Italy
| |
Collapse
|
7
|
Pozzolini M, Scarfì S, Mussino F, Ferrando S, Gallus L, Giovine M. Molecular Cloning, Characterization, and Expression Analysis of a Prolyl 4-Hydroxylase from the Marine Sponge Chondrosia reniformis. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2015; 17:393-407. [PMID: 25912371 DOI: 10.1007/s10126-015-9630-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 01/27/2015] [Indexed: 06/04/2023]
Abstract
Prolyl 4-hydroxylase (P4H) catalyzes the hydroxylation of proline residues in collagen. P4H has two functional subunits, α and β. Here, we report the cDNA cloning, characterization, and expression analysis of the α and β subunits of the P4H derived from the marine sponge Chondrosia reniformis. The amino acid sequence of the α subunit is 533 residues long with an M r of 59.14 kDa, while the β subunit counts 526 residues with an M r of 58.75 kDa. Phylogenetic analyses showed that αP4H and βP4H are more related to the mammalian sequences than to known invertebrate P4Hs. Western blot analysis of sponge lysate protein cross-linking revealed a band of 240 kDa corresponding to an α2β2 tetramer structure. This result suggests that P4H from marine sponges shares the same quaternary structure with vertebrate homologous enzymes. Gene expression analyses showed that αP4H transcript is higher in the choanosome than in the ectosome, while the study of factors affecting its expression in sponge fragmorphs revealed that soluble silicates had no effect on the αP4H levels, whereas ascorbic acid strongly upregulated the αP4H mRNA. Finally, treatment with two different tumor necrosis factor (TNF)-alpha inhibitors determined a significant downregulation of αP4H gene expression in fragmorphs demonstrating, for the first time in Porifera, a positive involvement of TNF in sponge matrix biosynthesis. The molecular characterization of P4H genes involved in collagen hydroxylation, including the mechanisms that regulate their expression, is a key step for future recombinant sponge collagen production and may be pivotal to understand pathological mechanisms related to extracellular matrix deposition in higher organisms.
Collapse
Affiliation(s)
- Marina Pozzolini
- Department of Territory Environment and Life Sciences, University of Genova, Via Pastore 3, 16132, Genova, Italy,
| | | | | | | | | | | |
Collapse
|
8
|
Zhang Q, Guan J, Rong R, Zhao Y, Yu Z. Study on degradation kinetics of 2-(2-hydroxypropanamido) benzoic acid in aqueous solutions and identification of its major degradation product by UHPLC/TOF–MS/MS. J Pharm Biomed Anal 2015; 112:1-7. [DOI: 10.1016/j.jpba.2015.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/06/2015] [Accepted: 04/08/2015] [Indexed: 12/23/2022]
|
9
|
Discodermolide. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/b978-0-08-100023-6.00003-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
10
|
Leal MC, Sheridan C, Osinga R, Dionísio G, Rocha RJM, Silva B, Rosa R, Calado R. Marine microorganism-invertebrate assemblages: perspectives to solve the "supply problem" in the initial steps of drug discovery. Mar Drugs 2014; 12:3929-52. [PMID: 24983638 PMCID: PMC4113807 DOI: 10.3390/md12073929] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 04/04/2014] [Accepted: 06/06/2014] [Indexed: 01/11/2023] Open
Abstract
The chemical diversity associated with marine natural products (MNP) is unanimously acknowledged as the "blue gold" in the urgent quest for new drugs. Consequently, a significant increase in the discovery of MNP published in the literature has been observed in the past decades, particularly from marine invertebrates. However, it remains unclear whether target metabolites originate from the marine invertebrates themselves or from their microbial symbionts. This issue underlines critical challenges associated with the lack of biomass required to supply the early stages of the drug discovery pipeline. The present review discusses potential solutions for such challenges, with particular emphasis on innovative approaches to culture invertebrate holobionts (microorganism-invertebrate assemblages) through in toto aquaculture, together with methods for the discovery and initial production of bioactive compounds from these microbial symbionts.
Collapse
Affiliation(s)
- Miguel Costa Leal
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal.
| | - Christopher Sheridan
- Biology of Marine Organisms and Biomimetics Laboratory, Research Institute for Biosciences, University of Mons, Pentagone 2B, 6 Avenue du Champ de Mars, Mons 7000, Belgium.
| | - Ronald Osinga
- Department of Aquaculture and Fisheries, Wageningen University, P.O. Box 338, 6700 AH Wageningen, The Netherlands.
| | - Gisela Dionísio
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal.
| | - Rui Jorge Miranda Rocha
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal.
| | - Bruna Silva
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal.
| | - Rui Rosa
- Laboratório Marítimo da Guia, Centro de Oceanografia, Faculdade de Ciências da Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, Cascais 2750-374, Portugal.
| | - Ricardo Calado
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal.
| |
Collapse
|
11
|
Pérez-López P, Ternon E, González-García S, Genta-Jouve G, Feijoo G, Thomas OP, Moreira MT. Environmental solutions for the sustainable production of bioactive natural products from the marine sponge Crambe crambe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 475:71-82. [PMID: 24419288 DOI: 10.1016/j.scitotenv.2013.12.068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 12/13/2013] [Accepted: 12/15/2013] [Indexed: 06/03/2023]
Abstract
Crambe crambe is a Mediterranean marine sponge known to produce original natural substances belonging to two families of guanidine alkaloids, namely crambescins and crambescidins, which exhibit cytotoxic and antiviral activities. These compounds are therefore considered as potential anticancer drugs. The present study focuses on the environmental assessment of a novel in vivo process for the production of pure crambescin and crambescidin using sponge specimens cultured in aquarium. The assessment was performed following the ISO 14040 standard and extended from the production of the different mass and energy flows to the system to the growth of the sponge in indoor aquarium and further periodic extraction and purification of the bioactive compounds. According to the results, the two stages that have a remarkable contribution to all impact categories are the purification of the bioactive molecules followed by the maintenance of the sponge culture in the aquarium. Among the involved activities, the production of the chemicals (particularly methanol) together with the electricity requirements (especially due to the aquarium lighting) are responsible for up to 90% of the impact in most of the assessed categories. However, the contributions of other stages to the environmental burdens, such as the collection of sponges, considerably depend on the assumptions made during the inventory stage. The simulation of alternative scenarios has led to propose improvement alternatives that may allow significant reductions ranging from 20% to 70%, mainly thanks to the reduction of electricity requirements as well as the partial reuse of methanol.
Collapse
Affiliation(s)
- Paula Pérez-López
- Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| | - Eva Ternon
- Nice Institute of Chemistry, PCRE, UMR 7272 CNRS, University of Nice Sophia-Antipolis, Faculté des Sciences, Parc Valrose, 06108 Nice, France
| | - Sara González-García
- Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Grégory Genta-Jouve
- Nice Institute of Chemistry, PCRE, UMR 7272 CNRS, University of Nice Sophia-Antipolis, Faculté des Sciences, Parc Valrose, 06108 Nice, France
| | - Gumersindo Feijoo
- Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Olivier P Thomas
- Nice Institute of Chemistry, PCRE, UMR 7272 CNRS, University of Nice Sophia-Antipolis, Faculté des Sciences, Parc Valrose, 06108 Nice, France
| | - Ma Teresa Moreira
- Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
12
|
Ellithey MS, Lall N, Hussein AA, Meyer D. Cytotoxic and HIV-1 enzyme inhibitory activities of Red Sea marine organisms. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:77. [PMID: 24568567 PMCID: PMC3939812 DOI: 10.1186/1472-6882-14-77] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 02/17/2014] [Indexed: 02/02/2023]
Abstract
Background Cancer and HIV/AIDS are two of the greatest public health and humanitarian challenges facing the world today. Infection with HIV not only weakens the immune system leading to AIDS and increasing the risk of opportunistic infections, but also increases the risk of several types of cancer. The enormous biodiversity of marine habitats is mirrored by the molecular diversity of secondary metabolites found in marine animals, plants and microbes which is why this work was designed to assess the anti-HIV and cytotoxic activities of some marine organisms of the Red Sea. Methods The lipophilic fractions of methanolic extracts of thirteen marine organisms collected from the Red Sea (Egypt) were screened for cytotoxicity against two human cancer cell lines; leukaemia (U937) and cervical cancer (HeLa) cells. African green monkey kidney cells (Vero) were used as normal non-malignant control cells. The extracts were also tested for their inhibitory activity against HIV-1 enzymes, reverse transcriptase (RT) and protease (PR). Results Cytotoxicity results showed strong activity of the Cnidarian Litophyton arboreum against U-937 (IC50; 6.5 μg/ml ±2.3) with a selectivity index (SI) of 6.45, while the Cnidarian Sarcophyton trochliophorum showed strong activity against HeLa cells (IC50; 5.2 μg/ml ±1.2) with an SI of 2.09. Other species showed moderate to weak cytotoxicity against both cell lines. Two extracts showed potent inhibitory activity against HIV-1 protease; these were the Cnidarian jelly fish Cassiopia andromeda (IC50; 0.84 μg/ml ±0.05) and the red algae Galaxura filamentosa (2.6 μg/ml ±1.29). It is interesting to note that the most active extracts against HIV-1 PR, C. andromeda and G. filamentosa showed no cytotoxicity in the three cell lines at the highest concentration tested (100 μg/ml). Conclusion The strong cytotoxicity of the soft corals L. arboreum and S. trochliophorum as well as the anti-PR activity of the jelly fish C. andromeda and the red algae G. filamentosa suggests the medicinal potential of crude extracts of these marine organisms.
Collapse
|
13
|
Lavy A, Keren R, Haber M, Schwartz I, Ilan M. Implementing sponge physiological and genomic information to enhance the diversity of its culturable associated bacteria. FEMS Microbiol Ecol 2013; 87:486-502. [DOI: 10.1111/1574-6941.12240] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 09/30/2013] [Accepted: 10/20/2013] [Indexed: 11/28/2022] Open
Affiliation(s)
- Adi Lavy
- Department of Zoology; George S. Wise Faculty of Life Sciences; Tel Aviv University; Tel Aviv Israel
| | - Ray Keren
- Department of Zoology; George S. Wise Faculty of Life Sciences; Tel Aviv University; Tel Aviv Israel
| | - Markus Haber
- Department of Zoology; George S. Wise Faculty of Life Sciences; Tel Aviv University; Tel Aviv Israel
| | - Inbar Schwartz
- Department of Zoology; George S. Wise Faculty of Life Sciences; Tel Aviv University; Tel Aviv Israel
| | - Micha Ilan
- Department of Zoology; George S. Wise Faculty of Life Sciences; Tel Aviv University; Tel Aviv Israel
| |
Collapse
|
14
|
Ruiz C, Valderrama K, Zea S, Castellanos L. Mariculture and natural production of the antitumoural (+)-discodermolide by the Caribbean marine sponge Discodermia dissoluta. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2013; 15:571-583. [PMID: 23728846 DOI: 10.1007/s10126-013-9510-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Accepted: 03/26/2013] [Indexed: 06/02/2023]
Abstract
Biotechnological research on marine organisms, such as ex situ or in situ aquaculture and in vitro cell culture, is being conducted to produce bioactive metabolites for biomedical and industrial uses. The Caribbean marine sponge Discodermia dissoluta is the source of (+)-discodermolide, a potent antitumoural polyketide that has reached clinical trials. This sponge usually lives at depths greater than 30 m, but at Santa Marta (Colombia) there is a shallower population, which has made it logistically possible to investigate for the first time, on ways to supply discodermolide. We thus performed in situ, 6-month fragment culture trials to assess the performance of this sponge in terms of growth and additional discodermolide production and studied possible factors that influence the variability of discodermolide concentrations in the wild. Sponge fragments cultured in soft mesh bags suspended from horizontal lines showed high survivorship (93 %), moderate growth (28 % increase in volume) and an overall rise (33 %) in the discodermolide concentration, equivalent to average additional production of 8 μg of compound per millilitre of sponge. The concentration of discodermolide in wild sponges ranged from 8 to 40 μg mL(-1). Locality was the only factor related to discodermolide variation in the wild, and there were greater concentrations in peripheral vs. basal portions of the sponge, and in clean vs. fouled individuals. As natural growth and regeneration rates can be higher than culture growth rates, there is room for improving techniques to sustainably produce discodermolide.
Collapse
Affiliation(s)
- Cesar Ruiz
- Instituto de Investigaciones Marinas y Costeras-INVEMAR, Calle 25 2-55, Rodadero Sur - Playa Salguero, Santa Marta, Colombia
| | | | | | | |
Collapse
|
15
|
|