1
|
Nickoloff JA, Sharma N, Taylor L, Allen SJ, Lee SH, Hromas R. Metnase and EEPD1: DNA Repair Functions and Potential Targets in Cancer Therapy. Front Oncol 2022; 12:808757. [PMID: 35155245 PMCID: PMC8831698 DOI: 10.3389/fonc.2022.808757] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/12/2022] [Indexed: 12/30/2022] Open
Abstract
Cells respond to DNA damage by activating signaling and DNA repair systems, described as the DNA damage response (DDR). Clarifying DDR pathways and their dysregulation in cancer are important for understanding cancer etiology, how cancer cells exploit the DDR to survive endogenous and treatment-related stress, and to identify DDR targets as therapeutic targets. Cancer is often treated with genotoxic chemicals and/or ionizing radiation. These agents are cytotoxic because they induce DNA double-strand breaks (DSBs) directly, or indirectly by inducing replication stress which causes replication fork collapse to DSBs. EEPD1 and Metnase are structure-specific nucleases, and Metnase is also a protein methyl transferase that methylates histone H3 and itself. EEPD1 and Metnase promote repair of frank, two-ended DSBs, and both promote the timely and accurate restart of replication forks that have collapsed to single-ended DSBs. In addition to its roles in HR, Metnase also promotes DSB repair by classical non-homologous recombination, and chromosome decatenation mediated by TopoIIα. Although mutations in Metnase and EEPD1 are not common in cancer, both proteins are frequently overexpressed, which may help tumor cells manage oncogenic stress or confer resistance to therapeutics. Here we focus on Metnase and EEPD1 DNA repair pathways, and discuss opportunities for targeting these pathways to enhance cancer therapy.
Collapse
Affiliation(s)
- Jac A Nickoloff
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | - Neelam Sharma
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | - Lynn Taylor
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | - Sage J Allen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | - Suk-Hee Lee
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Robert Hromas
- Division of Hematology and Medical Oncology, Department of Medicine and the Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, United States
| |
Collapse
|
2
|
Zhou S, Huang G, Chen G. Synthesis and anti-tumor activity of marine alkaloids. Bioorg Med Chem Lett 2021; 41:128009. [DOI: 10.1016/j.bmcl.2021.128009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/20/2021] [Accepted: 03/28/2021] [Indexed: 12/16/2022]
|
3
|
Zhou S, Huang G. Retracted Article: The synthesis and biological activity of marine alkaloid derivatives and analogues. RSC Adv 2020; 10:31909-31935. [PMID: 35518151 PMCID: PMC9056551 DOI: 10.1039/d0ra05856d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 07/29/2020] [Indexed: 12/11/2022] Open
Abstract
The ocean is the origin of life, with a unique ecological environment, which has given birth to a wealth of marine organisms. The ocean is an important source of biological resources and tens of thousands of monomeric compounds have been separated from marine organisms using modern separation technology. Most of these monomeric compounds have some kind of biological activity that has attracted extensive attention from researchers. Marine alkaloids are a kind of compound that can be separated from marine organisms. They have complex and special chemical structures, but at the same time, they can show diversity in biological activities. The biological activities of marine alkaloids mainly manifest in the form of anti-tumor, anti-fungus, anti-viral, anti-malaria, and anti-osteoporosis properties. Many marine alkaloids have good medicinal prospects and can possibly be used as anti-tumor, anti-viral, and anti-fungal clinical drugs or as lead compounds. The limited amounts of marine alkaloids that can be obtained by separation, coupled with the high cytotoxicity and low selectivity of these lead compounds, has restricted the clinical research and industrial development of marine alkaloids. Marine alkaloid derivatives and analogues have been obtained via rational drug design and chemical synthesis, to make up for the shortcomings of marine alkaloids; this has become an urgent subject for research and development. This work systematically reviews the recent developments relating to marine alkaloid derivatives and analogues in the field of medical chemistry over the last 10 years (2010-2019). We divide marine alkaloid derivatives and analogues into five types from the point-of-view of biological activity and elaborated on these activities. We also briefly discuss the optimization process, chemical synthesis, biological activity evaluation, and structure-activity relationship (SAR) of each of these compounds. The abundant SAR data provides reasonable approaches for the design and development of new biologically active marine alkaloid derivatives and analogues.
Collapse
Affiliation(s)
- Shiyang Zhou
- Chongqing Key Laboratory of Green Synthesis and Application, Active Carbohydrate Research Institute, College of Chemistry, Chongqing Normal University Chongqing 401331 China
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University Haikou Hainan 571158 China
| | - Gangliang Huang
- Chongqing Key Laboratory of Green Synthesis and Application, Active Carbohydrate Research Institute, College of Chemistry, Chongqing Normal University Chongqing 401331 China
| |
Collapse
|
4
|
Abraham AD, Esquer H, Zhou Q, Tomlinson N, Hamill BD, Abbott JM, Li L, Pike LA, Rinaldetti S, Ramirez DA, Lunghofer PJ, Gomez JD, Schaack J, Nemkov T, D'Alessandro A, Hansen KC, Gustafson DL, Messersmith WA, LaBarbera DV. Drug Design Targeting T-Cell Factor-Driven Epithelial-Mesenchymal Transition as a Therapeutic Strategy for Colorectal Cancer. J Med Chem 2019; 62:10182-10203. [PMID: 31675229 DOI: 10.1021/acs.jmedchem.9b01065] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metastasis is the cause of 90% of mortality in cancer patients. For metastatic colorectal cancer (mCRC), the standard-of-care drug therapies only palliate the symptoms but are ineffective, evidenced by a low survival rate of ∼11%. T-cell factor (TCF) transcription is a major driving force in CRC, and we have characterized it to be a master regulator of epithelial-mesenchymal transition (EMT). EMT transforms relatively benign epithelial tumor cells into quasi-mesenchymal or mesenchymal cells that possess cancer stem cell properties, promoting multidrug resistance and metastasis. We have identified topoisomerase IIα (TOP2A) as a DNA-binding factor required for TCF-transcription. Herein, we describe the design, synthesis, biological evaluation, and in vitro and in vivo pharmacokinetic analysis of TOP2A ATP-competitive inhibitors that prevent TCF-transcription and modulate or reverse EMT in mCRC. Unlike TOP2A poisons, ATP-competitive inhibitors do not damage DNA, potentially limiting adverse effects. This work demonstrates a new therapeutic strategy targeting TOP2A for the treatment of mCRC and potentially other types of cancers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Dominique A Ramirez
- Clinical Sciences, School of Biomedical Engineering , Colorado State University , Fort Collins , Colorado 80523 , United States
| | - Paul J Lunghofer
- Clinical Sciences, School of Biomedical Engineering , Colorado State University , Fort Collins , Colorado 80523 , United States
| | | | | | | | | | | | - Daniel L Gustafson
- Clinical Sciences, School of Biomedical Engineering , Colorado State University , Fort Collins , Colorado 80523 , United States
| | | | | |
Collapse
|
5
|
Volvoikar PS, Tilve SG, Zubkov FI. A Concise Approach for the Synthesis of the ABCD Ring System of Alpkinidine. ChemistrySelect 2019. [DOI: 10.1002/slct.201900357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Santosh G. Tilve
- School of Chemical SciencesGoa University Taleigao Plateau, Goa 403206 India
| | - Fedor I. Zubkov
- Organic Chemistry DepartmentRUDN University 6 Miklukcho-Maklaya str. Moscow 117198 RussianFederation
| |
Collapse
|
6
|
Advances in the Chemistry of Natural and Semisynthetic Topoisomerase I/II Inhibitors. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2017. [DOI: 10.1016/b978-0-444-63929-5.00002-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
7
|
Zhou Q, Abraham AD, Li L, Babalmorad A, Bagby S, Arcaroli JJ, Hansen RJ, Valeriote FA, Gustafson DL, Schaack J, Messersmith WA, LaBarbera DV. Topoisomerase IIα mediates TCF-dependent epithelial-mesenchymal transition in colon cancer. Oncogene 2016; 35:4990-9. [PMID: 26947016 PMCID: PMC5036162 DOI: 10.1038/onc.2016.29] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 12/16/2015] [Accepted: 01/06/2016] [Indexed: 12/23/2022]
Abstract
Aberrant T-cell factor (TCF) transcription is implicated in the majority of colorectal cancers (CRCs). TCF transcription induces epithelial–mesenchymal transition (EMT), promoting a tumor-initiating cell (TIC) phenotype characterized by increased proliferation, multidrug resistance (MDR), invasion and metastasis. The data presented herein characterize topoisomerase IIα (TopoIIα) as a required component of TCF transcription promoting EMT. Using chromatin immunoprecipitation (ChIP) and protein co-immunoprecipitation (co-IP) studies, we show that TopoIIα forms protein–protein interactions with β-catentin and TCF4 and interacts with Wnt response elements (WREs) and promoters of direct target genes of TCF transcription, including: MYC, vimentin, AXIN2 and LEF1. Moreover, both TopoIIα and TCF4 ChIP with the N-cadherin promoter, which is a new discovery indicating that TCF transcription may directly regulate N-cadherin expression. TopoIIα N-terminal ATP-competitive inhibitors, exemplified by the marine alkaloid neoamphimedine (neo), block TCF activity in vitro and in vivo. Neo effectively inhibits TopoIIα and TCF4 from binding WREs/promoter sites, whereas protein–protein interactions remain intact. Neo inhibition of TopoIIα-dependent TCF transcription also correlates with significant antitumor effects in vitro and in vivo, including the reversion of EMT, the loss of TIC-mediated clonogenic colony formation, and the loss of cell motility and invasion. Interestingly, non-ATP-competitive inhibitors of TopoIIα, etoposide and merbarone, were ineffective at preventing TopoIIα-dependent TCF transcription. Thus, we propose that TopoIIα participation in TCF transcription may convey a mechanism of MDR to conventional TopoIIα inhibitors. However, our results indicate that TopoIIα N-terminal ATP-binding sites remain conserved and available for drug targeting. This article defines a new strategy for targeted inhibition of TCF transcription that may lead to effective therapies for the treatment of CRC and potentially other Wnt-dependent cancers.
Collapse
Affiliation(s)
- Q Zhou
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - A D Abraham
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - L Li
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - A Babalmorad
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - S Bagby
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - J J Arcaroli
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Division of Medical Oncology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - R J Hansen
- Division of Medical Oncology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - F A Valeriote
- Colorado State University, Flint Animal Cancer Center, Fort Collins, CO, USA
| | - D L Gustafson
- Division of Medical Oncology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - J Schaack
- Division of Medical Oncology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Josephine Ford Cancer Center, Henry Ford Health Systems, Detroit, MI, USA
| | - W A Messersmith
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Division of Medical Oncology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - D V LaBarbera
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Division of Medical Oncology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
8
|
Khalil IM, Barker D, Copp BR. Bioinspired Syntheses of the Pyridoacridine Marine Alkaloids Demethyldeoxyamphimedine, Deoxyamphimedine, and Amphimedine. J Org Chem 2015; 81:282-9. [PMID: 26642369 DOI: 10.1021/acs.joc.5b02312] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Efficient bioinspired syntheses of the biologically active pyridoacridine marine alkaloids demethyldeoxyamphimedine, deoxyamphimedine, and amphimedine are reported. Reaction of styelsamine D, prepared via an optimized route starting from Boc-dopamine, with paraformaldehyde afforded demethyldeoxyamphimedine and deoxyamphimedine. Oxidation of the latter using either K3[Fe(CN)6] or DMSO/conc. HCl gave amphimedine in 8 steps from tryptamine with an overall yield of 14%. The versatility of the method was demonstrated by the synthesis of non-natural ethyl and benzyl congeners of deoxyamphimedine and amphimedine.
Collapse
Affiliation(s)
- Iman M Khalil
- School of Chemical Sciences, University of Auckland , 23 Symonds St, Auckland 1010, New Zealand
| | - David Barker
- School of Chemical Sciences, University of Auckland , 23 Symonds St, Auckland 1010, New Zealand
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland , 23 Symonds St, Auckland 1010, New Zealand
| |
Collapse
|
9
|
Sandjo LP, Kuete V, Biavatti MW. Pyridinoacridine alkaloids of marine origin: NMR and MS spectral data, synthesis, biosynthesis and biological activity. Beilstein J Org Chem 2015; 11:1667-99. [PMID: 26664587 PMCID: PMC4660921 DOI: 10.3762/bjoc.11.183] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 08/27/2015] [Indexed: 11/23/2022] Open
Abstract
This review focuses on pyridoacridine-related metabolites as one biologically interesting group of alkaloids identified from marine sources. They are produced by marine sponges, ascidians and tunicates, and they are structurally comprised of four to eight fused rings including heterocycles. Acridine, acridone, dihydroacridine, and quinolone cores are features regularly found in these alkaloid skeletons. The lack of hydrogen atoms next to quaternary carbon atoms for two or three rings makes the chemical shift assignment a difficult task. In this regard, one of the aims of this review is the compilation of previously reported, pyridoacridine (13)C NMR data. Observations have been made on the delocalization of electrons and the presence of some functional groups that lead to changes in the chemical shift of some carbon resonances. The lack of mass spectra information for these alkaloids due to the compactness of their structures is further discussed. Moreover, the biosynthetic pathways of some of these metabolites have been shown since they could inspire biomimetic synthesis. The synthesis routes used to prepare members of these marine alkaloids (as well as their analogues), which are synthesized for biological purposes are also discussed. Pyridoacridines were found to have a large spectrum of bioactivity and this review highlights and compares the pharmacophores that are responsible for the observed bioactivity.
Collapse
Affiliation(s)
- Louis P Sandjo
- Department of Pharmaceutical Sciences, CCS, Universidade Federal de Santa Catarina, Florianopolis 88040-900, SC, Brazil
| | - Victor Kuete
- Department of Biochemistry, Faculty of Sciences, University of Dschang, Cameroon
| | - Maique W Biavatti
- Department of Pharmaceutical Sciences, CCS, Universidade Federal de Santa Catarina, Florianopolis 88040-900, SC, Brazil
| |
Collapse
|
10
|
Boucle S, Melin C, Clastre M, Guillard J. Design, synthesis and evaluation of new marine alkaloid-derived pentacyclic structures with anti-tumoral potency. Mar Drugs 2015; 13:655-65. [PMID: 25607930 PMCID: PMC4306956 DOI: 10.3390/md13010655] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/10/2014] [Accepted: 01/09/2015] [Indexed: 11/25/2022] Open
Abstract
This work describes the synthesis and biological evaluation of a new heterocyclic hybrid derived from the ellipticine and the marine alkaloid makaluvamine A. Pyridoquinoxalinedione 12 was obtained in seven steps with 6.5% overall yield. 12 and its intermediates 1–11 were evaluated for their in vitro cytotoxic activity against different cancer cell lines and tested for their inhibitory activity against the human DNA topoisomerase II. The analysis by electrophoresis shows that the pentacycle 12 inhibits the topoisomerase II like doxorubicine at 100 µM. Compound 9 was found to have an interesting profile, having a cytotoxicity of 15, 15, 15 and 10 μM against Caco-2, HCT-116, Pc-3 and NCI cell lines respectively, without any noticeable toxicity against human fibroblast.
Collapse
Affiliation(s)
- Sebastien Boucle
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, Decatur, GA 30033, USA.
| | - Celine Melin
- University François Rabelais de Tours, EA2106 Biomolécules et Biotechnologies Végétales, 31 avenue Monge, 37200 Tours, France.
| | - Marc Clastre
- University François Rabelais de Tours, EA2106 Biomolécules et Biotechnologies Végétales, 31 avenue Monge, 37200 Tours, France.
| | - Jerome Guillard
- University of Poitiers, UMR CNRS IC2MP 7285, 40 avenue du Recteur Pineau, 86022 Poitiers Cedex, France.
| |
Collapse
|
11
|
A mini review on pyridoacridines: Prospective lead compounds in medicinal chemistry. J Adv Res 2014; 6:63-71. [PMID: 25685544 PMCID: PMC4293674 DOI: 10.1016/j.jare.2014.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 10/18/2014] [Accepted: 11/01/2014] [Indexed: 02/03/2023] Open
Abstract
Natural products are increasingly being considered “critical and important” in drug discovery paradigms as a number of them such as camptothecin, penicillin, and vincristine serve as “lead molecules” for the discovery of potent compounds of therapeutic interests namely irinotecan, penicillin G, vinblastine respectively. Derived compounds of pharmacological interests displayed a wide variety of activity viz. anticancer, anti-inflammatory, antimicrobial, anti-protozoal, etc.; when modifications or derivatizations are performed on a parent moiety representing the corresponding derivatives. Pyridoacridine is such a moiety which forms the basic structure of numerous medicinally important natural products such as, but not limited to, amphimedine, ascididemin, eilatin, and sampangine. Interestingly, synthetic analogues of natural pyridoacridine exhibit diverse pharmacological activities and in view of these, natural pyridoacridines can be considered as “lead compounds”. This review additionally provides a brief but critical account of inherent structure activity relationships among various subclasses of pyridoacridines. Furthermore, the current aspects and future prospects of natural pyridoacridines are detailed for further reference and consideration.
Collapse
|
12
|
Li L, Abraham AD, Zhou Q, Ali H, O'Brien JV, Hamill BD, Arcaroli JJ, Messersmith WA, LaBarbera DV. An improved high yield total synthesis and cytotoxicity study of the marine alkaloid neoamphimedine: an ATP-competitive inhibitor of topoisomerase IIα and potent anticancer agent. Mar Drugs 2014; 12:4833-50. [PMID: 25244109 PMCID: PMC4178486 DOI: 10.3390/md12094833] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 08/25/2014] [Accepted: 09/05/2014] [Indexed: 12/24/2022] Open
Abstract
Recently, we characterized neoamphimedine (neo) as an ATP-competitive inhibitor of the ATPase domain of human Topoisomerase IIα. Thus far, neo is the only pyridoacridine with this mechanism of action. One limiting factor in the development of neo as a therapeutic agent has been access to sufficient amounts of material for biological testing. Although there are two reported syntheses of neo, both require 12 steps with low overall yields (≤6%). In this article, we report an improved total synthesis of neo achieved in 10 steps with a 25% overall yield. In addition, we report an expanded cytotoxicity study using a panel of human cancer cell lines, including: breast, colorectal, lung, and leukemia. Neo displays potent cytotoxicity (nM IC50 values) in all, with significant potency against colorectal cancer (lowest IC50 = 6 nM). We show that neo is cytotoxic not cytostatic, and that neo exerts cytotoxicity by inducing G2-M cell cycle arrest and apoptosis.
Collapse
Affiliation(s)
- Linfeng Li
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Adedoyin D Abraham
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Qiong Zhou
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Hadi Ali
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Jeremy V O'Brien
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Brayden D Hamill
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - John J Arcaroli
- Division of Medical Oncology, School of Medicine, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Wells A Messersmith
- Division of Medical Oncology, School of Medicine, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Daniel V LaBarbera
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
13
|
Buccini M, Jeow SY, Byrne L, Skelton BW, Nguyen TM, Chai CLL, Piggott MJ. Bisannulation of 2,3-Dichloro-1,4-naphthoquinone witho-Nitrophenylacetic Acid Derivatives: A Succinct Synthesis of the ABCD Ring System of Alpkinidine. European J Org Chem 2013. [DOI: 10.1002/ejoc.201300227] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
|
15
|
Métifiot M, Marchand C, Pommier Y. HIV integrase inhibitors: 20-year landmark and challenges. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2013; 67:75-105. [PMID: 23885999 DOI: 10.1016/b978-0-12-405880-4.00003-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Since the discovery of HIV as the cause for AIDS 30 years ago, major progress has been made, including the discovery of drugs that now control the disease. Here, we review the integrase (IN) inhibitors from the discovery of the first compounds 20 years ago to the approval of two highly effective IN strand transfer inhibitors (INSTIs), raltegravir (Isentress) and elvitegravir (Stribild), and the promising clinical activity of dolutegravir. After summarizing the molecular mechanism of action of the INSTIs as interfacial inhibitors, we discuss the remaining challenges. Those include: overcoming resistance to clinical INSTIs, long-term safety of INSTIs, cost of therapy, place of the INSTIs in prophylactic treatments, and the development of new classes of inhibitors (the LEDGINs) targeting IN outside its catalytic site. We also discuss the role of chromatin and host DNA repair factor for the completion of integration.
Collapse
Affiliation(s)
- Mathieu Métifiot
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | |
Collapse
|
16
|
Bailly C. Contemporary challenges in the design of topoisomerase II inhibitors for cancer chemotherapy. Chem Rev 2012; 112:3611-40. [PMID: 22397403 DOI: 10.1021/cr200325f] [Citation(s) in RCA: 213] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Christian Bailly
- Centre de Recherche et Développement, Institut de Recherche Pierre Fabre, Toulouse, France.
| |
Collapse
|