1
|
Sangtanoo P, Srimongkol P, Saisavoey T, Puthong S, Buakeaw A, Suttisuwan R, Jatupornpipat M, Pimtong W, Reamtong O, Karnchanatat A. Bee pollen peptides as potent tyrosinase inhibitors with anti-melanogenesis effects in murine b16f10 melanoma cells and zebrafish embryos. Sci Rep 2024; 14:30834. [PMID: 39730661 DOI: 10.1038/s41598-024-81495-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 11/27/2024] [Indexed: 12/29/2024] Open
Abstract
One important functional food ingredient today, valued for its health properties and ability to prevent disease, is bee pollen, which comprises a combination of nectar, pollen from plants, and the secretions of bees. In this research, the tyrosinase (TYR) inhibiting abilities of the peptides derived from bee pollen protein hydrolysates are investigated. Various proteases were utilized to generate these peptides, followed by testing at different concentrations. Tyrosinase inhibition activity was detected in all cases, while the hydrolysate drawn from 5.0% w/v neutrase exhibited the best IC50 value and was thus investigated further via ultrafiltration to separate the active fractions. The highest potential for tyrosinase inhibition was recorded for the fractions below 0.65 kDa. Subsequent purification steps via SEC and RP-HPLC led to the identification of the VDGYPAAGY (named VY-9) peptide via LC-Q-TOF-MS/MS in fraction F1-2, known for its non-toxic and hydrophobic characteristics albeit poor water solubility. The synthesized VY-9 peptide demonstrated competitive inhibition, with IC50 values of 0.55 ± 0.03 µM for mono-phenolase and 2.54 ± 0.06 µM for di-phenolase activities, as confirmed by molecular docking analysis revealing dominant hydrogen bond interactions with TYR. Effective concentrations of 0.2-1.6 µM of VY-9 showed negligible cytotoxicity in B16F10 cells. Melanin synthesis suppression was examined via qRT-PCR, and western blot in MITF, TYR, TRP-1, and TRP-2. Cell death in zebrafish embryos was evaluated in vivo using a toxicity assay which revealed no significant influence from VY-9, while anti-melanogenic effects were observed when the concentration was 4 µM, suggesting bee pollen-derived peptides' potential in cosmetic and pharmaceutical depigmentation applications.
Collapse
Affiliation(s)
- Papassara Sangtanoo
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Piroonporn Srimongkol
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Tanatorn Saisavoey
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Songchan Puthong
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Anumart Buakeaw
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Rutairat Suttisuwan
- Biodiversity and Sustainable Utilization Research Unit, Department of Biology, Faculty of Science and Technology, Rajamangala University of Technology Krungthep, 2 Nang linchi Road, Sathorn, Bangkok, 10120, Thailand
| | - Marisa Jatupornpipat
- Department of Biology, Faculty of Science, King Mongkut's Institute of Technology, Ladkrabang, Chalongkrung Road, Ladkrabang, Bangkok, 10520, Thailand
| | - Wittaya Pimtong
- Nano Environmental and Health Safety Research Team, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Aphichart Karnchanatat
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
2
|
Peng X, Ma Y, Yan C, Wei X, Zhang L, Jiang H, Ma Y, Zhang S, Xing M, Gao Y. Mechanism, Formulation, and Efficacy Evaluation of Natural Products for Skin Pigmentation Treatment. Pharmaceutics 2024; 16:1022. [PMID: 39204367 PMCID: PMC11359997 DOI: 10.3390/pharmaceutics16081022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Skin pigmentation typically arises from the excessive secretion and accumulation of melanin, resulting in a darker complexion compared to normal skin. Currently, the local application of chemical drugs is a first-line strategy for pigmentation disorders, but the safety and efficacy of drugs still cannot meet clinical treatment needs. For long-term and safe medication, researchers have paid attention to natural products with higher biocompatibility. This article begins by examining the pathogenesis and treatment approaches of skin pigmentation diseases and summarizes the research progress and mechanism of natural products with lightening or whitening effects that are clinically common or experimentally proven. Moreover, we outline the novel formulations of natural products in treating pigmentation disorders, including liposomes, nanoparticles, microemulsions, microneedles, and tocosomes. Finally, the pharmacodynamic evaluation methods in the study of pigmentation disorder were first systematically analyzed. In brief, this review aims to collect natural products for skin pigmentation treatment and investigate their formulation design and efficacy evaluation to provide insights for the development of new products for this complex skin disease.
Collapse
Affiliation(s)
- Xueli Peng
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China;
| | - Yuning Ma
- Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.M.); (X.W.); (L.Z.); (H.J.)
| | - Chenxin Yan
- Beijing CAS Microneedle Technology, Ltd., Beijing 102609, China;
| | - Xiaocen Wei
- Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.M.); (X.W.); (L.Z.); (H.J.)
| | - Linlin Zhang
- Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.M.); (X.W.); (L.Z.); (H.J.)
| | - Hehe Jiang
- Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.M.); (X.W.); (L.Z.); (H.J.)
| | - Yuxia Ma
- Department of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Suohui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing 100190, China;
| | - Mengzhen Xing
- Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.M.); (X.W.); (L.Z.); (H.J.)
| | - Yunhua Gao
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China;
- Beijing CAS Microneedle Technology, Ltd., Beijing 102609, China;
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing 100190, China;
| |
Collapse
|
3
|
Hu J, Chen B, Qu S, Liu S, Yang X, Qiao K, Su Y, Liu Z, Chen X, Liu Z, Wang Q. Anti-Melanogenic Effects of Takifugu flavidus Muscle Hydrolysate in B16F10 Melanoma Cells and Zebrafish. Mar Drugs 2024; 22:206. [PMID: 38786597 PMCID: PMC11122720 DOI: 10.3390/md22050206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Abnormal melanogenesis can lead to hyperpigmentation. Tyrosinase (TYR), a key rate-limiting enzyme in melanin production, is an important therapeutic target for these disorders. We investigated the TYR inhibitory activity of hydrolysates extracted from the muscle tissue of Takifugu flavidus (TFMH). We used computer-aided virtual screening to identify a novel peptide that potently inhibited melanin synthesis, simulated its binding mode to TYR, and evaluated functional efficacy in vitro and in vivo. TFMH inhibited the diphenolase activities of mTYR, reducing TYR substrate binding activity and effectively inhibiting melanin synthesis. TFMH indirectly reduced cAMP response element-binding protein phosphorylation in vitro by downregulating melanocortin 1 receptor expression, thereby inhibiting expression of the microphthalmia-associated transcription factor, further decreasing TYR, tyrosinase related protein 1, and dopachrome tautomerase expression and ultimately impeding melanin synthesis. In zebrafish, TFMH significantly reduced black spot formation. TFMH (200 μg/mL) decreased zebrafish TYR activity by 43% and melanin content by 52%. Molecular dynamics simulations over 100 ns revealed that the FGFRSP (T-6) peptide stably binds mushroom TYR via hydrogen bonds and ionic interactions. T-6 (400 μmol/L) reduced melanin content in B16F10 melanoma cells by 71% and TYR activity by 79%. In zebrafish, T-6 (200 μmol/L) inhibited melanin production by 64%. TFMH and T-6 exhibit good potential for the development of natural skin-whitening cosmetic products.
Collapse
Affiliation(s)
- Jinjin Hu
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China;
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361000, China; (B.C.); (S.L.); (K.Q.); (Y.S.)
| | - Bei Chen
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361000, China; (B.C.); (S.L.); (K.Q.); (Y.S.)
| | - Shuaijie Qu
- School of Life Sciences, Xiamen University, Xiamen 361100, China; (S.Q.); (X.Y.)
| | - Shuji Liu
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361000, China; (B.C.); (S.L.); (K.Q.); (Y.S.)
| | - Xiaoyu Yang
- School of Life Sciences, Xiamen University, Xiamen 361100, China; (S.Q.); (X.Y.)
| | - Kun Qiao
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361000, China; (B.C.); (S.L.); (K.Q.); (Y.S.)
| | - Yongchang Su
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361000, China; (B.C.); (S.L.); (K.Q.); (Y.S.)
| | - Zhihui Liu
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China;
| | - Xiaoe Chen
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China;
| | - Zhiyu Liu
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361000, China; (B.C.); (S.L.); (K.Q.); (Y.S.)
| | - Qin Wang
- School of Life Sciences, Xiamen University, Xiamen 361100, China; (S.Q.); (X.Y.)
| |
Collapse
|
4
|
Zhao S, Chen X, Dutta K, Chen J, Wang J, Zhang Q, Jia H, Sun J, Lai Y. Multiple gene-drug prediction tool reveals Rosiglitazone based treatment pathway for non-segmental vitiligo. Inflammation 2024; 47:678-695. [PMID: 38159176 DOI: 10.1007/s10753-023-01937-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/15/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024]
Abstract
Vitiligo is a skin disease characterized by selective loss of melanocytes, which seriously affects the appearance and causes great psychological stress to patients. In this study, we performed a comprehensive analysis of two vitiligo microarray datasets from the GEO database using bioinformatics tools to identify 297 up-regulated mRNAs and 186 down-regulated mRNAs, revealing important roles for pathways related to melanin synthesis, tyrosine metabolism, and inflammatory factors, such as "PPAR signaling pathway", "tyrosine metabolism", "nonalcoholic fatty liver disease (NAFLD) pathway", "melanogenesis", and "IL-17 signaling pathway". Combining the Search Tool for Interacting Chemicals (STITCH) database 5.0 and the drug-gene interaction database 3.0 (DGIdb), we identified that the PPAR-γ agonist rosiglitazone may promote melanin synthesis via EDNRB. Next, we investigated the mechanism of rosiglitazone and PPAR-γ pathway in promoting melanin production. Consistent with the results of bioinformatics analysis, the expression levels of PPAR-γ, EDNRB, and TYR were significantly reduced in human non-segmental vitiligo skin along with the reduction of MITF, a key gene for epidermal melanogenesis. Meanwhile, rosiglitazone increased melanin synthesis capacity in melanocytes and zebrafish by activating PPAR-γ and upregulating TYR, TYRP-1, and TYRP-2. Conversely, treatment of melanocytes with the PPAR-γ antagonist GW resulted in inhibition of melanin synthesis and expression of melanin-related factors. At the same time, simultaneous treatment of rosiglitazone with GW reversed the inhibitory effect of GW on melanin synthesis. In this study, we identified that rosiglitazone, an important insulin sensitizer, promotes melanin synthesis in melanocytes by increasing PPAR-γ activity and upregulating the expression levels of EDNRB and TYR. These findings may provide new ideas for exploring the pathogenesis and potential therapeutic targets of non-segmental vitiligo.
Collapse
Affiliation(s)
- Sijia Zhao
- Department of dermatologic Surgery, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xi Chen
- Department of Dermatology, Allergology and Venereology, Universitätsklinikum Schleswig-Holstein, Lübeck, Schleswig-Holstein, Germany
| | - Kuheli Dutta
- Department of Dermatology, Allergology and Venereology, Universitätsklinikum Schleswig-Holstein, Lübeck, Schleswig-Holstein, Germany
| | - Jia Chen
- Department of dermatologic Surgery, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Juan Wang
- School of Medicine, Shanghai University, Shanghai, China
| | - Qian Zhang
- Department of Pathology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, People's Republic of China
| | - Hong Jia
- Department of Pathology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, People's Republic of China
| | - Jianfang Sun
- Department of Pathology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, People's Republic of China.
| | - Yongxian Lai
- Department of dermatologic Surgery, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
5
|
Hseu YC, Yeh JT, Vadivalagan C, Chen SJ, Gowrisankar YV, Pandey S, Hsu YT, Yen HR, Huang HC, Hseu JH, Yang HL. The in vitro and in vivo depigmentation activity of coenzyme Q 0, a major quinone derivative from Antrodia camphorata, through autophagy induction in human melanocytes and keratinocytes. Cell Commun Signal 2024; 22:151. [PMID: 38408981 PMCID: PMC10895752 DOI: 10.1186/s12964-024-01537-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/18/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Coenzyme Q0 (CoQ0), a novel quinone derivative of Antrodia camphorata, has been utilized as a therapeutic agent (including antioxidant, anti-inflammatory, antiangiogenic, antiatherosclerotic, and anticancer agents); however, its depigmenting efficiency has yet to be studied. METHODS We resolved the depigmenting efficiency of CoQ0 through autophagy induction in melanoma (B16F10) and melanin-feeding keratinocyte (HaCaT) cells and in vivo Zebrafish model. Then, MPLC/HPLC analysis, MTT assay, Western blotting, immunofluorescence staining, LC3 transfection, melanin formation, GFP-LC3 puncta, AVO formation, tyrosinase activity, and TEM were used. RESULTS CoQ0-induced autophagy in B16F10 cells was shown by enhanced LC3-II accumulation, ATG7 expression, autophagosome GFP-LC3 puncta, and AVOs formation, and ATG4B downregulation, and Beclin-1/Bcl-2 dysregulation. In α-MSH-stimulated B16F10 cells, CoQ0 induced antimelanogenesis by suppressing CREB-MITF pathway, tyrosinase expression/activity, and melanin formation via autophagy. TEM data disclosed that CoQ0 increased melanosome-engulfing autophagosomes and autolysosomes in α-MSH-stimulated B16F10 cells. CoQ0-inhibited melanogenesis in α-MSH-stimulated B16F10 cells was reversed by pretreatment with the autophagy inhibitor 3-MA or silencing of LC3. Additionally, CoQ0-induced autophagy in HaCaT cells was revealed by enhanced LC3-II accumulation, autophagosome GFP-LC3 puncta and AVO formation, ATG4B downregulation, ATG5/ATG7 expression, and Beclin-1/Bcl-2 dysregulation. In melanin-feeding HaCaT cells, CoQ0 induced melanin degradation by suppressing melanosome gp100 and melanin formation via autophagy. TEM confirmed that CoQ0 increased melanosome-engulfing autophagosomes and autolysosomes in melanin-feeding HaCaT cells. Treatment with 3-MA reversed CoQ0-mediated melanin degradation in melanin-feeding HaCaT cells. In vivo study showed that CoQ0 suppressed endogenous body pigmentation by antimelanogenesis and melanin degradation through autophagy induction in a zebrafish model. CONCLUSIONS Our results showed that CoQ0 exerted antimelanogenesis and melanin degradation by inducing autophagy. CoQ0 could be used in skin-whitening formulations as a topical cosmetic application.
Collapse
Affiliation(s)
- You-Cheng Hseu
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung, 406040, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, 406040, Taiwan
- Research Center of Chinese Herbal Medicine, China Medical University, Taichung, 406040, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, 413305, Taiwan
| | - Jou-Tsen Yeh
- Institute of Nutrition, College of Health Care, China Medical University, Taichung, 406040, Taiwan
| | - Chithravel Vadivalagan
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan, 48109, United States
| | - Siang-Jyun Chen
- Institute of Nutrition, College of Health Care, China Medical University, Taichung, 406040, Taiwan
| | | | - Sudhir Pandey
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung, 406040, Taiwan
| | - Yuan-Tai Hsu
- Institute of Nutrition, College of Health Care, China Medical University, Taichung, 406040, Taiwan
| | - Hung-Rong Yen
- Chinese Medicine Research Center, China Medical University, Taichung, 406040, Taiwan
- Research Center of Chinese Herbal Medicine, China Medical University, Taichung, 406040, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, 404333, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, 404333, Taiwan
| | - Hui-Chi Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung, 406040, Taiwan
| | - Jhih-Hsuan Hseu
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan.
| | - Hsin-Ling Yang
- Institute of Nutrition, College of Health Care, China Medical University, Taichung, 406040, Taiwan.
| |
Collapse
|
6
|
Syed Mohamad SNA, Khatib A, So’ad SZM, Ahmed QU, Ibrahim Z, Nipun TS, Humaryanto H, AlAjmi MF, Khalifa SAM, El-Seedi HR. In Vitro Anti-Diabetic, Anti-Inflammatory, Antioxidant Activities and Toxicological Study of Optimized Psychotria malayana Jack Leaves Extract. Pharmaceuticals (Basel) 2023; 16:1692. [PMID: 38139818 PMCID: PMC10747829 DOI: 10.3390/ph16121692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/18/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Psychotria malayana Jack (Family: Rubiaceae, local name: Salung) is a traditional herb used to treat diabetes. A previous study by our research group demonstrated that P. malayana methanolic and water extract exhibits significant potential as an effective agent for managing diabetes. Further research has been performed on the extraction optimization of this plant to enhance its inhibitory activity against α-glucosidase, a key enzyme associated with diabetes, and to reduce its toxicity. The objectives of this study are to evaluate the anti-diabetic, anti-inflammatory, and antioxidant properties of the optimized P. malayana leaf extract (OE), to evaluate its toxicity using a zebrafish embryo/larvae model, and to analyze its metabolites. The anti-diabetic effects were assessed by investigating α-glucosidase inhibition (AGI), while the inflammation inhibitory activity was performed using the soybean lipoxygenase inhibitory (SLOXI) test. The assessment of antioxidant activity was performed utilizing FRAP and DPPH assays. The toxicology study was conducted using the zebrafish embryo/larvae (Danio rerio) model. The metabolites present in the extracts were analyzed using GC-MS and LC-MS. OE demonstrated significant AGI and SLOXI activities, represented as 2.02 and 4.92 µg/mL for IC50 values, respectively. It exhibited potent antioxidant activities as determined by IC50 values of 13.08 µg/mL (using the DPPH assay) and 95.44 mmol TE/mg DW (using the FRAP assay), and also demonstrated an LC50 value of 224.29 µg/mL, which surpasses its therapeutic index of 111.03. OE exhibited a higher therapeutic index compared to that of the methanol extract (13.84) stated in the previous state of the art. This suggests that OE exhibits a lower level of toxicity, making it safer for use, and has the potential to be highly effective in its anti-diabetic activity. Liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) demonstrated the presence of several constituents in this extract. Among them, several compounds, such as propanoic acid, succinic acid, D-tagatose, myo-inositol, isorhamnetin, moracin M-3'-O-β-D-glucopyranoside, procyanidin B3, and leucopelargonidin, have been reported as possessing anti-diabetic and antioxidant activities. This finding offers great potential for future research in diabetes treatment.
Collapse
Affiliation(s)
- Sharifah Nurul Akilah Syed Mohamad
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang Darul Makmur, Malaysia; (S.N.A.S.M.); (S.Z.M.S.); (Q.U.A.); (Z.I.)
| | - Alfi Khatib
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang Darul Makmur, Malaysia; (S.N.A.S.M.); (S.Z.M.S.); (Q.U.A.); (Z.I.)
- Central Research and Animal Facility, Kulliyyah of Science, International Islamic University Malaysia, Kuantan 25200, Pahang Darul Makmur, Malaysia
- Faculty of Pharmacy, Airlangga University, Surabaya 60155, Indonesia
| | - Siti Zaiton Mat So’ad
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang Darul Makmur, Malaysia; (S.N.A.S.M.); (S.Z.M.S.); (Q.U.A.); (Z.I.)
| | - Qamar Uddin Ahmed
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang Darul Makmur, Malaysia; (S.N.A.S.M.); (S.Z.M.S.); (Q.U.A.); (Z.I.)
| | - Zalikha Ibrahim
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang Darul Makmur, Malaysia; (S.N.A.S.M.); (S.Z.M.S.); (Q.U.A.); (Z.I.)
| | - Tanzina Sharmin Nipun
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh;
| | | | - Mohamed F. AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Shaden A. M. Khalifa
- Psychiatry and Psychology Department, Capio Saint Göran’s Hospital, Sankt Göransplan 1, 112 19 Stockholm, Sweden;
| | - Hesham R. El-Seedi
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 31100107, Egypt
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu Education Department, Jiangsu University, Nanjing 210024, China
| |
Collapse
|
7
|
Yan C, Xing M, Zhang S, Gao Y. Clinical Development and Evaluation of a Multi-Component Dissolving Microneedle Patch for Skin Pigmentation Disorders. Polymers (Basel) 2023; 15:3296. [PMID: 37571190 PMCID: PMC10422440 DOI: 10.3390/polym15153296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Excessive melanin deposition in the skin leads to various skin pigmentation diseases, such as chloasma and age spots. The deposition is induced by several factors, including tyrosinase activities and ultraviolet-induced oxidative stress. Herein, we propose a multi-component, multi-pathway drug combination, with glabridin, 3-O-ethyl-L-ascorbic acid, and tranexamic acid employed as, respectively, a tyrosinase inhibitor, an antioxidant, and a melanin transmission inhibitor. Considering the poor skin permeability associated with topical application, dissolving microneedles (MNs) prepared with hyaluronic acid/poly(vinyl alcohol)/poly(vinylpyrrolidone) were developed to load the drug combination. The drug-loaded microneedles (DMNs) presented outstanding skin insertion, dissolution, and drug delivery properties. In vitro experiments confirmed that DMNs loaded with active ingredients had significant antioxidant and inhibitory effects on tyrosinase activity. Furthermore, the production of melanin both in melanoma cells (B16-F10) and in zebrafish was directly reduced after using DMNs. Clinical studies demonstrated the DMNs' safety and showed that they have the ability to effectively reduce chloasma and age spots. This study indicated that a complex DMN based on a multifunctional combination is a valuable depigmentation product worthy of clinical application.
Collapse
Affiliation(s)
- Chenxin Yan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengzhen Xing
- Key Laboratory of New Material Research Institute, Department of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Suohui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
- Beijing CAS Microneedle Technology Ltd., Beijing 102609, China
| | - Yunhua Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing CAS Microneedle Technology Ltd., Beijing 102609, China
| |
Collapse
|
8
|
Jeon HJ, Kim K, Kim C, Lee SE. Antimelanogenic Effects of Curcumin and Its Dimethoxy Derivatives: Mechanistic Investigation Using B16F10 Melanoma Cells and Zebrafish ( Danio rerio) Embryos. Foods 2023; 12:foods12050926. [PMID: 36900442 PMCID: PMC10000565 DOI: 10.3390/foods12050926] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
Regulation of melanin production via the MC1R signaling pathway is a protective mechanism of the skin of living organisms against exposure to ultraviolet rays. The discovery of human skin-whitening agents has been one of the most intense pursuits of the cosmetic industry. The MC1R signaling pathway is activated by its agonist, alpha-melanocyte stimulating hormone (α-MSH), and mainly regulates melanogenesis. Here, we evaluated the antimelanogenic activities of curcumin (CUR) and its two derivatives, dimethoxycurcumin (DMC) and bisdemethoxycurcumin (BDMC), in B16F10 mouse melanoma cells and zebrafish embryos. CUR and BDMC reduced the α-MSH-induced melanin production in B16F10 cells and also downregulated the expression of the melanin-production-related genes Tyr, Mitf, Trp-1, and Trp-2. Moreover, the biological activity of these two compounds against melanogenesis was confirmed in in vivo experiments using zebrafish embryos. However, the highest concentration of CUR (5 µM) resulted in slight malformations in zebrafish embryos, as indicated by acute toxicity tests. In contrast, DMC did not show any biological activity in vitro or in vivo. Conclusively, BDMC is a strong candidate as a skin-whitening agent.
Collapse
Affiliation(s)
- Hwang-Ju Jeon
- Red River Research Station, Louisiana State University Agricultural Center, Bossier City, LA 71112, USA
| | - Kyeongnam Kim
- Institute of Quality and Safety Evaluation of Agricultural Products, Kyungpook National University, Daegu 41566, Republic of Korea
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Chaeeun Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sung-Eun Lee
- Institute of Quality and Safety Evaluation of Agricultural Products, Kyungpook National University, Daegu 41566, Republic of Korea
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
- Correspondence: ; Tel.: +82-53-950-7768
| |
Collapse
|
9
|
Huang P, Miao J, Liao W, Huang C, Chen B, Li Y, Wang X, Yu Y, Liang X, Zhao H, Cao Y. Rapid screening of novel tyrosinase inhibitory peptides from a pearl shell meat hydrolysate by molecular docking and the anti-melanin mechanism. Food Funct 2023; 14:1446-1458. [PMID: 36648079 DOI: 10.1039/d2fo03105a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pearls are an edible and medicinal resource with whitening activity and nutritional value in China. In the previous study, we found that the pearl shell meat hydrolysate showed dual activities of antioxidation and tyrosinase inhibition, which were similar to the activities of pearls. In this research, a pearl shell meat hydrolysate was isolated, identified and screened by molecular docking, and three peptides FLF, SPSSS and WLL with high tyrosinase inhibitory activities were obtained. The results indicated that FLF, SPSSS and WLL could effectively inhibit tyrosinase activities and the inhibition rates (1.0 mg mL-1) were 54.32%, 65.26% and 57.50%, respectively. The results of a zebrafish whitening experiment showed that the tyrosinase activities of zebrafish treated with FLF, SPSSS and WLL decreased by 75.41%, 62.87% and 64.99% (p < 0.05), respectively, and the melanin content decreased by 37.34%, 38.52% and 40.39% (p < 0.05), respectively. In a B16F10 cell whitening experiment, compared with a control group, FLF, SPSSS and WLL also showed a significant whitening effect, the tyrosinase activities decreased by 84.08%, 79.08% and 77.45% (p < 0.05), respectively, and the melanin content decreased by 42.23%, 34.37% and 34.02% (p < 0.05), respectively. Moreover, the active peptides could act on three signal pathways including Wnt/β-catenin, MAPK and MC1R/α-MSH and significantly downregulated the expressions of the signaling factors WNT4, MITF, β-catenin, ERK, JNK, TRP1 and TRP2 (p < 0.05). The results demonstrated that the whitening active peptides were edible natural antioxidants, tyrosinase inhibitors and skin anti-melanin agents, which could be added to functional foods as food ingredients.
Collapse
Affiliation(s)
- Pantian Huang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Jianyin Miao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China. .,Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang 438000, China
| | - Wanwen Liao
- B.I.R.D. (Guangzhou) Biotechnology Co., Ltd, Guangzhou 510642, China
| | - Congshu Huang
- B.I.R.D. (Guangzhou) Biotechnology Co., Ltd, Guangzhou 510642, China
| | - Bingbing Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Yingkun Li
- Beihai Black Pearl Marine Biotechnology Co. Ltd, Beihai 536000, China
| | - Xianghua Wang
- Beihai Black Pearl Marine Biotechnology Co. Ltd, Beihai 536000, China
| | - Yan Yu
- Beihai Black Pearl Marine Biotechnology Co. Ltd, Beihai 536000, China
| | - Xingtang Liang
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 535011, China
| | - Haishan Zhao
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
10
|
Anti-Melanogenic Potential of Natural and Synthetic Substances: Application in Zebrafish Model. Molecules 2023; 28:molecules28031053. [PMID: 36770722 PMCID: PMC9920495 DOI: 10.3390/molecules28031053] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
Melanogenesis is a biosynthetic pathway for the formation of the pigment melanin in human skin. A key enzyme in the process of pigmentation through melanin is tyrosinase, which catalyzes the first and only limiting step in melanogenesis. Since the discovery of its methanogenic properties, tyrosinase has been the focus of research related to the anti-melanogenesis. In addition to developing more effective and commercially safe inhibitors, more studies are required to better understand the mechanisms involved in the skin depigmentation process. However, in vivo assays are necessary to develop and validate new drugs or molecules for this purpose, and to accomplish this, zebrafish has been identified as a model organism for in vivo application. In addition, such model would allow tracking and studying the depigmenting activity of many bioactive compounds, important to genetics, medicinal chemistry and even the cosmetic industry. Studies have shown the similarity between human and zebrafish genomes, encouraging their use as a model to understand the mechanism of action of a tested compound. Interestingly, zebrafish skin shares many similarities with human skin, suggesting that this model organism is suitable for studying melanogenesis inhibitors. Accordingly, several bioactive compounds reported herein for this model are compared in terms of their molecular structure and possible mode of action in zebrafish embryos. In particular, this article described the main metabolites of Trichoderma fungi, in addition to substances from natural and synthetic sources.
Collapse
|
11
|
An X, Lv J, Wang F. Pterostilbene inhibits melanogenesis, melanocyte dendricity and melanosome transport through cAMP/PKA/CREB pathway. Eur J Pharmacol 2022; 932:175231. [PMID: 36038012 DOI: 10.1016/j.ejphar.2022.175231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 11/03/2022]
Abstract
Pterostilbene is a trans stilbene compound, which is an effective component of herbaceous plants such as Dalbergia woods and Vaccinium. Although pterostilbene has many uses in anti-inflammatory, anti-oxidant and anti-tumor, its whitening effect is drawing more and more attention, the mechanism of melanogenesis and melanosome transport still needs further study. In this research, we tried to further investigate how melanocyte melanogenesis is affected by pterostilbene and whether pterostilbene play a part in melanin transport. Our results showed that pterostilbene has a potent inhibitory effect on melanogenesis in B16F10 cells (3 μM, p < 0.001), in-vitro human skin (10 μM, p < 0.05) and zebrafish embryos (3 μM, p < 0.01). Besides, pterostilbene not only inhibited melanogenesis, but also inhibited melanocyte dendritic development and melanosome transport. Pterostilbene mainly plays a role by inhibiting cAMP/PKA/CREB signal pathway. After the cAMP/PKA/CREB signaling pathway was inhibited, tyrosinase activity and the expression of MITF, TYR, Rab27A, Rab17 and gp100 were decreased, which in turn suppressed melanogenesis, melanocyte dendritic development and melanosome transport. Our findings showed that pterostilbene can potently inhibit melanogenesis and melanosome transport, suggesting the applicability of pterostilbene in skin lightning. Therefore, a novel pharmacologic way to treat hyperpigmentation has been proposed.
Collapse
Affiliation(s)
- Xiaohong An
- Botanee Bio-technology Group Co., Ltd., Yunnan, 650000, China; Shanghai Jiyan Bio-pharmaceutical Co., Ltd., Shanghai, 200000, China
| | - Jinpeng Lv
- School of Pharmacy, Changzhou University, Changzhou, 213000, China
| | - Feifei Wang
- Botanee Bio-technology Group Co., Ltd., Yunnan, 650000, China; Shanghai Jiyan Bio-pharmaceutical Co., Ltd., Shanghai, 200000, China.
| |
Collapse
|
12
|
Fu T, Qin X, Ma Y, Yuan XY, Wu S, Ye X, Dang Y. Yohimbine hydrochloride inhibits skin melanin synthesis by regulating wnt/β-catenin and p38/MAPK signal pathways. J Dermatol Sci 2022; 107:17-23. [DOI: 10.1016/j.jdermsci.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 05/31/2022] [Accepted: 06/30/2022] [Indexed: 10/17/2022]
|
13
|
Makarova K, Zawada K, Wiweger M. Benchtop X-band electron paramagnetic resonance detection of melanin and Nitroxyl spin probe in zebrafish. Free Radic Biol Med 2022; 183:69-74. [PMID: 35314357 DOI: 10.1016/j.freeradbiomed.2022.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/05/2022] [Accepted: 03/17/2022] [Indexed: 11/28/2022]
Abstract
EPR spectroscopy is a technique that provides direct information about free radicals in biological systems. So far, X-band EPR was seldomly used for in vivo studies as the small resonator size and high power used to detect EPR signals were unsuitable for living organisms. Here, we report new solutions which lift some limitations and make X-band EPR suitable for an in vivo detection of free radicals in zebrafish - a small laboratory animal that is often used as a model for various studies related to free radicals. We designed specially-shaped glass and quartz capillaries to ensure the zebrafish's safety during the experiments. The optimal EPR spectrometer parameters, safe for zebrafish embryos and sufficient to obtain EPR spectrum, were 4 scans by 20s, 100G sweep, and 0.8 mW power. Combining the specially-shaped capillary with a multi-harmonic analyzer for the EPR spectrometer allowed increasing the time up to 16 scans by 11s and lowering the power to 0.25 mW. As a proof of principle, we demonstrate the detection of melanin radicals and the 5-DSA spin probe in zebrafish larvae. As fish survive the EPR scans, the possibility of performing multiple measurements of free radicals in living zebrafish offers new tools for studies aiming to understand redox biology and membrane-dependent functions in both health and disease.
Collapse
Affiliation(s)
- Katerina Makarova
- Department of Physical Chemistry, Chair of Physical Pharmacy and Bioanalysis, Faculty of Pharmacy with Laboratory Medicine Division, Medical University of Warsaw, 1 Banacha Str, 02-097, Warsaw, Poland.
| | - Katarzyna Zawada
- Department of Physical Chemistry, Chair of Physical Pharmacy and Bioanalysis, Faculty of Pharmacy with Laboratory Medicine Division, Medical University of Warsaw, 1 Banacha Str, 02-097, Warsaw, Poland
| | - Malgorzata Wiweger
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, 4 Ks. Trojdena Str, 02-109, Warsaw, Poland
| |
Collapse
|
14
|
Je JG, Jiang Y, Heo JH, Li X, Jeon YJ, Ryu BM. Mitigative Effects of PFF-A Isolated from Ecklonia cava on Pigmentation in a Zebrafish Model and Melanogenesis in B16F10 Cells. Mar Drugs 2022; 20:123. [PMID: 35200653 PMCID: PMC8877154 DOI: 10.3390/md20020123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 01/29/2022] [Accepted: 02/03/2022] [Indexed: 02/01/2023] Open
Abstract
Melanin synthesis is a defense mechanism that prevents skin damage, but excessive accumulation of melanin occurs in the skin in various reactions such as pigmentation, lentigines, and freckles. Although anti-melanogenic effects have been demonstrated for various naturally occurring marine products that inhibit and control tyrosinase activity, most studies have not been extended to in vivo applications. Phlorofucofuroeckol-A (PFF-A, 12.5-100 µM) isolated from Ecklonia cava has previously been shown to have tyrosinase-mitigative effects in B16F10 cells, but it has not been evaluated in an in vivo model, and its underlying mechanism for anti-melanogenic effects has not been studied. In the present study, we evaluated the safety and efficacy of PFF-A for anti-melanogenic effects in an in vivo model. We selected low doses of PFF-A (1.5-15 nM) and investigated their mitigative effects on pigmentation stimulated by α-MSH in vivo and their related-mechanism in an in vitro model. The findings suggest that low-dose PFF-A derived from E. cava suppresses pigmentation in vivo and melanogenesis in vitro. Therefore, this study presents the possibility that PFF-A could be utilized as a new anti-melanogenic agent in the cosmeceutical industries.
Collapse
Affiliation(s)
- Jun-Geon Je
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Korea; (J.-G.J.); (J.-H.H.); (Y.-J.J.)
| | - Yunfei Jiang
- School of Food Engineering, Jilin Agriculture Science and Technology University, Jilin 132101, China;
| | - Jun-Ho Heo
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Korea; (J.-G.J.); (J.-H.H.); (Y.-J.J.)
| | - Xining Li
- School of Life Sciences, Northeast Normal University, Changchun 130024, China;
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Korea; (J.-G.J.); (J.-H.H.); (Y.-J.J.)
- Marine Science Institute, Jeju National University, Jeju 63333, Korea
| | - Bo-Mi Ryu
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Korea; (J.-G.J.); (J.-H.H.); (Y.-J.J.)
| |
Collapse
|
15
|
Pavic A, Ilic-Tomic T, Glamočlija J. Unravelling Anti-Melanogenic Potency of Edible Mushrooms Laetiporus sulphureus and Agaricus silvaticus In Vivo Using the Zebrafish Model. J Fungi (Basel) 2021; 7:834. [PMID: 34682255 PMCID: PMC8540621 DOI: 10.3390/jof7100834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Severe drawbacks associated with the topical use of depigmenting agents in treatments of skin hyperigmentations impose a great demand for novel, effective, and safe melanogenesis inhibitors. Edible and medicinal mushrooms, known for numerous health-promoting properties, represent a rich reservoir of anti-melanogenic compounds, with the potential to be applied in preventing excessive skin pigmentation. Herein, using zebrafish (Danio rerio) as a preclinical animal model, we have demonstrated that ethanol extract of Laetiporus sulphureus (LSE) and Agaricus silvaticus (ASE) are not toxic at high doses up to 400-500 µg/mL while effectively inhibit melanogenesis in a dose-dependent manner. At depigmenting doses, the explored extracts showed no adverse effects on zebrafish embryos melanocytes. Even more, they did not provoke inflammation or neutropenia when applied at the highest dose ensuring almost complete the cells depigmentation. Since LSE and ASE have demonstrated significantly higher the therapeutic potential than kojic acid and hydroquinone, two well-known depigmenting agents, overall results of this study strongly suggest that the explored mushrooms extracts could be used as efficient and safe topical agents in treatments of skin hyperpigmentation disorders.
Collapse
Affiliation(s)
- Aleksandar Pavic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia;
| | - Tatjana Ilic-Tomic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia;
| | - Jasmina Glamočlija
- Institute for Biological Research “Siniša Stanković”, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| |
Collapse
|
16
|
Lin FJ, Li H, Wu DT, Zhuang QG, Li HB, Geng F, Gan RY. Recent development in zebrafish model for bioactivity and safety evaluation of natural products. Crit Rev Food Sci Nutr 2021; 62:8646-8674. [PMID: 34058920 DOI: 10.1080/10408398.2021.1931023] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The zebrafish is a species of freshwater fish, popular in aquariums and laboratories. Several advantageous features have facilitated zebrafish to be extensively utilized as a valuable vertebrate model in the lab. It has been well-recognized that natural products possess multiple health benefits for humans. With the increasing demand for natural products in the development of functional foods, nutraceuticals, and natural cosmetics, the zebrafish has emerged as an unprecedented tool for rapidly and economically screening and identifying safe and effective substances from natural products. This review first summarized the key factors for the management of zebrafish in the laboratory, followed by highlighting the current progress on the establishment and applications of zebrafish models in the bioactivity evaluation of natural products. In addition, the zebrafish models used for assessing the potential toxicity or health risks of natural products were involved as well. Overall, this review indicates that zebrafish are promising animal models for the bioactivity and safety evaluation of natural products, and zebrafish models can accelerate the discovery of novel natural products with potential health functions.
Collapse
Affiliation(s)
- Fang-Jun Lin
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, China.,Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Hang Li
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, China
| | - Qi-Guo Zhuang
- China-New Zealand Belt and Road Joint Laboratory on Kiwifruit, Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, China
| | - Ren-You Gan
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, China.,Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| |
Collapse
|
17
|
P-Glycoprotein Inhibitor Tariquidar Plays an Important Regulatory Role in Pigmentation in Larval Zebrafish. Cells 2021; 10:cells10030690. [PMID: 33804686 PMCID: PMC8003715 DOI: 10.3390/cells10030690] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 11/17/2022] Open
Abstract
Zebrafish has emerged as a powerful model in studies dealing with pigment development and pathobiology of pigment diseases. Due to its conserved pigment pattern with established genetic background, the zebrafish is used for screening of active compounds influencing melanophore, iridophore, and xanthophore development and differentiation. In our study, zebrafish embryos and larvae were used to investigate the influence of third-generation noncompetitive P-glycoprotein inhibitor, tariquidar (TQR), on pigmentation, including phenotype effects and changes in gene expression of chosen chromatophore differentiation markers. Five-day exposure to increasing TQR concentrations (1 µM, 10 µM, and 50 µM) resulted in a dose-dependent augmentation of the area covered with melanophores but a reduction in the area covered by iridophores. The observations were performed in three distinct regions-the eye, dorsal head, and tail. Moreover, TQR enhanced melanophore renewal after depigmentation caused by 0.2 mM 1-phenyl-2-thiourea (PTU) treatment. qPCR analysis performed in 56-h post-fertilization (hpf) embryos demonstrated differential expression patterns of genes related to pigment development and differentiation. The most substantial findings include those indicating that TQR had no significant influence on leukocyte tyrosine kinase, GTP cyclohydrolase 2, tyrosinase-related protein 1, and forkhead box D3, however, markedly upregulated tyrosinase, dopachrome tautomerase and melanocyte inducing transcription factor, and downregulated purine nucleoside phosphorylase 4a. The present study suggests that TQR is an agent with multidirectional properties toward pigment cell formation and distribution in the zebrafish larvae and therefore points to the involvement of P-glycoprotein in this process.
Collapse
|
18
|
Saeedi M, Khezri K, Seyed Zakaryaei A, Mohammadamini H. A comprehensive review of the therapeutic potential of α-arbutin. Phytother Res 2021; 35:4136-4154. [PMID: 33724594 DOI: 10.1002/ptr.7076] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/01/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022]
Abstract
Cosmetic dermatology preparations such as bleaching agents are ingredients with skin-related biological activities for increasing and improving skin beauty. The possibility of controlling skin hyperpigmentation disorders is one of the most important research goals in cosmetic preparations. Recently, cosmetics containing herbal and botanical ingredients have attracted many interests for consumers of cosmetic products because these preparations are found safer than other preparations with synthetic components. However, high-quality trial studies in larger samples are needed to confirm safety and clinical efficacy of phytotherapeutic agents with high therapeutic index. Arbutin (p-hydroxyphenyl-β-d-glucopyranoside) is a bioactive hydrophilic polyphenol with two isomers including alpha-arbutin (4-hydroxyphenyl-α-glucopyranoside) and β-arbutin (4-hydroxyphenyl-β-glucopyranoside). It is used as a medicinal plant in phytopharmacy. Studies have shown that alpha-arbutin is 10 times more effective than natural arbutin. A comparison of IC50 values showed that α-arbutin (with concentration 2.0 mM) has a more potent inhibitory activity on human tyrosinase against natural arbutin (with higher concentration than 30 mM). A review of recent studies showed that arbutin could be beneficial in treatment of various diseases such as hyperpigmentation disorders, types of cancers, central nervous system disorders, osteoporosis, diabetes, etc. This study was designed to describe the therapeutic efficiencies of arbutin.
Collapse
Affiliation(s)
- Majid Saeedi
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Khadijeh Khezri
- Deputy of Food and Drug Administration, Urmia University of Medical Sciences, Urmia, Iran
| | | | | |
Collapse
|
19
|
Jeon HJ, Kim K, Kim C, Kim MJ, Kim TO, Lee SE. Molecular Mechanisms of Anti-Melanogenic Gedunin Derived from Neem Tree ( Azadirachta indica) Using B16F10 Mouse Melanoma Cells and Early-Stage Zebrafish. PLANTS 2021; 10:plants10020330. [PMID: 33572083 PMCID: PMC7914499 DOI: 10.3390/plants10020330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/03/2021] [Accepted: 02/07/2021] [Indexed: 12/21/2022]
Abstract
Melanogenesis represents a series of processes that produce melanin, a protective skin pigment (against ultraviolet rays), and determines human skin color. Chemicals reducing melanin production have always been in demand in the cosmetic market because of skincare interests, such as whitening. The main mechanism for inhibiting melanin production is the inhibition of tyrosinase (TYR), a key enzyme for melanogenesis. Here, we evaluated gedunin (Ged), a representative limonoid, for its anti-melanogenesis action. Melanin production in vitro was stimulated by alpha-melanocyte stimulating hormone (α-MSH) in B16F10 mouse melanoma cells. Ged reduced α-MSH-stimulated melanin production, inhibiting TYR activity and protein amount. We confirmed this result in vivo in a zebrafish model for melanogenesis. There was no sign of toxicity and malformation of zebrafish embryos during development in all treated concentrations. Ged reduced the number of produced zebrafish embryo pigment dots and melanin contents of embryos. The highly active concentration of Ged (100 µM) was much lower than the positive control, kojic acid (8 mM). Hence, Ged could be a fascinating candidate for anti-melanogenesis reagents.
Collapse
Affiliation(s)
- Hwang-Ju Jeon
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (H.-J.J.); (K.K.); (M.-J.K.)
| | - Kyeongnam Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (H.-J.J.); (K.K.); (M.-J.K.)
| | - Chaeeun Kim
- Department of Integrative Biology Kyungpook National University, Daegu 41566, Korea;
| | - Myoung-Jin Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (H.-J.J.); (K.K.); (M.-J.K.)
| | - Tae-Oh Kim
- College of Civil and Environmental Engineering, Kumoh National Institute of Technology, Gumi 39253, Korea;
- Department of Energy Engineering Convergence, Kumoh National Institute of Technology, Gumi 39177, Korea
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi 39177, Korea
| | - Sung-Eun Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (H.-J.J.); (K.K.); (M.-J.K.)
- Department of Integrative Biology Kyungpook National University, Daegu 41566, Korea;
- Correspondence: ; Tel.: +82-53-950-7768; Fax: +82-53-953-7233
| |
Collapse
|
20
|
Melanogenic Inhibition and Toxicity Assessment of Flavokawain A and B on B16/F10 Melanoma Cells and Zebrafish ( Danio rerio). Molecules 2020; 25:molecules25153403. [PMID: 32731323 PMCID: PMC7436045 DOI: 10.3390/molecules25153403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/14/2022] Open
Abstract
Excessive production of melanin implicates hyperpigmentation disorders. Flavokawain A (FLA) and flavokawain B (FLB) have been reported with anti-melanogenic activity, but their melanogenic inhibition and toxicity effects on the vertebrate model of zebrafish are still unknown. In the present study, cytotoxic as well as melanogenic effects of FLA and FLB on cellular melanin content and tyrosinase activity were evaluated in α-MSH-induced B16/F10 cells. Master regulator of microphthalmia-associated transcription factor (Mitf) and the other downstream melanogenic-related genes were verified via quantitative real time PCR (qPCR). Toxicity assessment and melanogenesis inhibition on zebrafish model was further observed. FLA and FLB significantly reduced the specific cellular melanin content by 4.3-fold and 9.6-fold decrement, respectively in α-MSH-induced B16/F10 cells. Concomitantly, FLA significantly reduced the specific cellular tyrosinase activity by 7-fold whilst FLB by 9-fold. The decrement of melanin production and tyrosinase activity were correlated with the mRNA suppression of Mitf which in turn down-regulate Tyr, Trp-1 and Trp-2. FLA and FLB exhibited non-toxic effects on the zebrafish model at 25 and 6.25 µM, respectively. Further experiments on the zebrafish model demonstrated successful phenotype-based depigmenting activity of FLA and FLB under induced melanogenesis. To sum up, our findings provide an important first key step for both of the chalcone derivatives to be further studied and developed as potent depigmenting agents.
Collapse
|
21
|
GSK-3β-Targeting Fisetin Promotes Melanogenesis in B16F10 Melanoma Cells and Zebrafish Larvae through β-Catenin Activation. Int J Mol Sci 2020; 21:ijms21010312. [PMID: 31906440 PMCID: PMC6982351 DOI: 10.3390/ijms21010312] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/24/2019] [Accepted: 12/30/2019] [Indexed: 01/01/2023] Open
Abstract
Fisetin is found in many fruits and plants such as grapes and onions, and exerts anti-inflammatory, anti-proliferative, and anticancer activity. However, whether fisetin regulates melanogenesis has been rarely studied. Therefore, we evaluated the effects of fisetin on melanogenesis in B16F10 melanoma cell and zebrafish larvae. The current study revealed that fisetin slightly suppressed in vitro mushroom tyrosinase activity; however, molecular docking data showed that fisetin did not directly bind to mushroom tyrosinase. Unexpectedly, fisetin significantly increased intracellular and extracellular melanin production in B16F10 melanoma cells regardless of the presence or absence of α-melanocyte stimulating hormone (α-MSH). We also found that the expression of melanogenesis-related genes such as tyrosinase and microphthalmia-associated transcription factor (MITF), were highly increased 48 h after fisetin treatment. Pigmentation of zebrafish larvae by fisetin treatment also increased at the concentrations up to 200 µM and then slightly decreased at 400 µM, with no alteration in the heart rates. Molecular docking data also revealed that fisetin binds to glycogen synthase kinase-3β (GSK-3β). Therefore, we evaluated whether fisetin negatively regulated GSK-3β, which subsequently activates β-catenin, resulting in melanogenesis. As expected, fisetin increased the expression of β-catenin, which was subsequently translocated into the nucleus. In the functional assay, FH535, a Wnt/β-catenin inhibitor, significantly inhibited fisetin-mediated melanogenesis in zebrafish larvae. Our data suggested that fisetin inhibits GSK-3β, which activates β-catenin, resulting in melanogenesis through the revitalization of MITF and tyrosinase.
Collapse
|
22
|
Anthocyanins from Hibiscus syriacus L. Inhibit Melanogenesis by Activating the ERK Signaling Pathway. Biomolecules 2019; 9:biom9110645. [PMID: 31653006 PMCID: PMC6920888 DOI: 10.3390/biom9110645] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 12/14/2022] Open
Abstract
Hibiscus syriacus L. exhibited promising potential as a new source of food and colorants containing various anthocyanins. However, the function of anthocyanins from H. syriacus L. has not been investigated. In the current study, we evaluated whether anthocyanins from the H. syriacus L. varieties Pulsae and Paektanshim (PS and PTS) inhibit melanin biogenesis. B16F10 cells and zebrafish larvae were exposed to PS and PTS in the presence or absence of α-melanocyte-stimulating hormone (α-MSH), and melanin contents accompanied by its regulating genes and proteins were analyzed. PS and PTS moderately downregulated mushroom tyrosinase activity in vitro, but significantly decreased extracellular and intracellular melanin production in B16F10 cells, and inhibited α-MSH-induced expression of microphthalmia-associated transcription factor (MITF) and tyrosinase. PS and PTS also attenuated pigmentation in α-MSH-stimulated zebrafish larvae. Furthermore, PS and PTS activated the phosphorylation of extracellular signal-regulated kinase (ERK), whereas PD98059, a specific ERK inhibitor, completely reversed PS- and PTS-mediated anti-melanogenic activity in B16F10 cells and zebrafish larvae, which indicates that PS- and PTS-mediated anti-melanogenic activity is due to ERK activation. Moreover, chromatography data showed that PS and PTS possessed 17 identical anthocyanins as a negative regulator of ERK. These findings suggested that anthocyanins from PS and PTS inhibited melanogenesis in vitro and in vivo by activating the ERK signaling pathway.
Collapse
|
23
|
Tissue Transparency In Vivo. Molecules 2019; 24:molecules24132388. [PMID: 31261621 PMCID: PMC6651221 DOI: 10.3390/molecules24132388] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/19/2019] [Accepted: 06/25/2019] [Indexed: 12/15/2022] Open
Abstract
In vivo tissue transparency in the visible light spectrum is beneficial for many research applications that use optical methods, whether it involves in vivo optical imaging of cells or their activity, or optical intervention to affect cells or their activity deep inside tissues, such as brain tissue. The classical view is that a tissue is transparent if it neither absorbs nor scatters light, and thus absorption and scattering are the key elements to be controlled to reach the necessary transparency. This review focuses on the latest genetic and chemical approaches for the decoloration of tissue pigments to reduce visible light absorption and the methods to reduce scattering in live tissues. We also discuss the possible molecules involved in transparency.
Collapse
|
24
|
Kim YM, Lee EC, Lim HM, Seo YK. Rice Bran Ash Mineral Extract Increases Pigmentation through the p-ERK Pathway in Zebrafish ( Danio rerio). Int J Mol Sci 2019; 20:ijms20092172. [PMID: 31052497 PMCID: PMC6539449 DOI: 10.3390/ijms20092172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 12/22/2022] Open
Abstract
The purpose of the present study is to evaluate the effect of rice bran ash mineral extract (RBM) on pigmentation in zebrafish (Danio rerio). Melanin has the ability to block ultraviolet (UV) radiation and scavenge free oxygen radicals, thus protecting the skin from their harmful effects. Agents that increase melanin synthesis in melanocytes may reduce the risk of photodamage and skin cancer. The present study investigates the effect of RBM on pigmentation in zebrafish and the underlying mechanism. RBM was found to significantly increase the expression of microphthalmia-associated transcription factor (MITF), a key transcription factor involved in melanin production. RBM also suppressed the phosphorylation of extracellular signal-regulated kinase (ERK), which negatively regulates zebrafish pigmentation. Together, these results suggest that RBM promotes melanin biosynthesis in zebrafish.
Collapse
Affiliation(s)
- Yu-Mi Kim
- Department of Medical Biotechnology (BK21 Plus Team), Dongguk University, Goyang-si 10326, Korea.
| | - Eun-Cheol Lee
- Department of Medical Biotechnology (BK21 Plus Team), Dongguk University, Goyang-si 10326, Korea.
| | - Han-Moi Lim
- Department of Medical Biotechnology (BK21 Plus Team), Dongguk University, Goyang-si 10326, Korea.
| | - Young-Kwon Seo
- Department of Medical Biotechnology (BK21 Plus Team), Dongguk University, Goyang-si 10326, Korea.
| |
Collapse
|
25
|
Lajis AFB, Ariff AB. Discovery of new depigmenting compounds and their efficacy to treat hyperpigmentation: Evidence from in vitro study. J Cosmet Dermatol 2019; 18:703-727. [PMID: 30866156 DOI: 10.1111/jocd.12900] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 01/22/2019] [Indexed: 12/19/2022]
Abstract
Human skin pigmentation is a result of constitutive and facultative pigmentation. Facultative pigmentation is frequently stimulated by UV radiation, pharmacologic drugs, and hormones whereby leads to the development of abnormal skin hyperpigmentation. To date, many state-of-art depigmenting compounds have been studied using in vitro model to treat hyperpigmentation problems for cosmetic dermatological applications; little attention has been made to compare the effectiveness of these depigmenting compounds and their mode of actions. In this present article, new and recent depigmenting compounds, their melanogenic pathway targets, and modes of action are reviewed. This article compares the effectiveness of these new depigmenting compounds to modulate several melanogenesis-regulatory enzymes and proteins such as tyrosinase (TYR), TYR-related protein-1 (TRP1), TYR-related protein-2 (TRP2), microphthalmia-associated transcription factor (MITF), extracellular signal-regulated kinase (ERK) and N-terminal kinases (JNK) and mitogen-activated protein kinase p38 (p38 MAPK). Other evidences from in vitro assays such as inhibition on melanosomal transfer, proteasomes, nitric oxide, and inflammation-induced melanogenesis are also highlighted. This article also reviews analytical techniques in different assays performed using in vitro model as well as their advantages and limitations. This article also provides an insight on recent finding and re-examination of some protocols as well as their effectiveness and reliability in the evaluation of depigmenting compounds. Evidence and support from related patents are also incorporated in this present article to give an overview on current patented technology, latest trends, and intellectual values of some depigmenting compounds and protocols, which are rarely highlighted in the literatures.
Collapse
Affiliation(s)
- Ahmad Firdaus B Lajis
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia.,Bioprocessing and Biomanufacturing Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia.,Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Arbakariya B Ariff
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia.,Bioprocessing and Biomanufacturing Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|