1
|
Ren L, Zhang T, Zhang J. Recent advances in dietary androgen receptor inhibitors. Med Res Rev 2024; 44:1446-1500. [PMID: 38279967 DOI: 10.1002/med.22019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/07/2023] [Accepted: 01/10/2024] [Indexed: 01/29/2024]
Abstract
As a nuclear transcription factor, the androgen receptor (AR) plays a crucial role not only in normal male sexual differentiation and growth of the prostate, but also in benign prostatic hyperplasia, prostatitis, and prostate cancer. Multiple population-based epidemiological studies demonstrated that prostate cancer risk was inversely associated with increased dietary intakes of green tea, soy products, tomato, and so forth. Therefore, this review aimed to summarize the structure and function of AR, and further illustrate the structural basis for antagonistic mechanisms of the currently clinically available antiandrogens. Due to the limitations of these antiandrogens, a series of natural AR inhibitors have been identified from edible plants such as fruits and vegetables, as well as folk medicines, health foods, and nutritional supplements. Hence, this review mainly focused on recent experimental, epidemiological, and clinical studies about natural AR inhibitors, particularly the association between dietary intake of natural antiandrogens and reduced risk of prostatic diseases. Since natural products offer multiple advantages over synthetic antiandrogens, this review may provide a comprehensive and updated overview of dietary-derived AR inhibitors, as well as their potential for the nutritional intervention against prostatic disorders.
Collapse
Affiliation(s)
- Li Ren
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| |
Collapse
|
2
|
Kong F, Wang C, Zhang J, Wang X, Sun B, Xiao X, Zhang H, Song Y, Jia Y. Chinese herbal medicines for prostate cancer therapy: From experimental research to clinical practice. CHINESE HERBAL MEDICINES 2023; 15:485-495. [PMID: 38094009 PMCID: PMC10715895 DOI: 10.1016/j.chmed.2023.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/17/2023] [Accepted: 05/20/2023] [Indexed: 06/26/2024] Open
Abstract
Prostate cancer remains the second most common malignancy in men worldwide, is a global health issue, and poses a huge health burden. Precision medicine provides more treatment options for prostate cancer patients, but its popularity, drug resistance, and adverse reactions still need to be focused on. Chinese herbal medicines (CHMs) have been widely accepted as an alternative therapy for cancer, with the advantages of multiple targets, multiple pathways, and low toxicity. We searched the experimental research and clinical practice of CHMs for prostate cancer treatment published in PubMed, Embase, and Web of Science in the last five years. We found five CHM formulas and six single CHM extracts as well as 12 CHM-derived compounds, which showed induction of apoptosis, autophagy, and cell cycle arrest, suppression of angiogenesis, proliferation, and migration of prostate cancer cells, reversal of drug resistance, and enhancement of anti-tumor immunity. The mechanisms of action include the PI3K/Akt/mTOR, AR, EGFR and Wnt/β-catenin signaling pathways, which are commonly implicated in the development of prostate cancer. We also summarized the advantages of CHMs in patients with hormone-sensitive and castration-resistant prostate cancer and provided ideas for their further experimental design and application.
Collapse
Affiliation(s)
- Fanming Kong
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Chaoran Wang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jing Zhang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Xiaoqun Wang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Binxu Sun
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Xian Xiao
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Haojian Zhang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yanqi Song
- Department of Traditional Chinese Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yingjie Jia
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| |
Collapse
|
3
|
Ghosh S, Hazra J, Pal K, Nelson VK, Pal M. Prostate cancer: Therapeutic prospect with herbal medicine. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100034. [PMID: 34909665 PMCID: PMC8663990 DOI: 10.1016/j.crphar.2021.100034] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) is a major cause of morbidity and mortality in men worldwide. A geographic variation on the burden of the disease suggested that the environment, genetic makeup, lifestyle, and food habits modulate one's susceptibility to the disease. Although it has been generally thought to be an older age disease, and awareness and timely execution of screening programs have managed to contain the disease in the older population over the last decades, the incidence is still increasing in the population younger than 50. Existing treatment is efficient for PCa that is localized and responsive to androgen. However, the androgen resistant and metastatic PCa are challenging to treat. Conventional radiation and chemotherapies are associated with severe side effects in addition to being exorbitantly expensive. Many isolated phytochemicals and extracts of plants used in traditional medicine are known for their safety and diverse healing properties, including many with varying levels of anti-PCa activities. Many of the phytochemicals discussed here, as shown by many laboratories, inhibit tumor cell growth and proliferation by interfering with the components in the pathways responsible for the enhanced proliferation, metabolism, angiogenesis, invasion, and metastasis in the prostate cells while upregulating the mechanisms of cell death and cell cycle arrest. Notably, many of these agents simultaneously target multiple cellular pathways. We analyzed the available literature and provided an update on this issue in this review article.
Collapse
Affiliation(s)
- Suvranil Ghosh
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| | - Joyita Hazra
- Department of Biotechnology, Indian Institute of Technology Madras, Tamil Nadu, India
| | | | - Vinod K. Nelson
- Department of Pharmacology, Raghavendra Institute of Pharmaceutical Education and Research, Andhra Pradesh, India
| | - Mahadeb Pal
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| |
Collapse
|
4
|
Liu X, Hu C, Li H, Wu L, Xiong Y, Tang X, Deng S. Metabolic profiling of fatty acids in Tripterygium wilfordii multiglucoside- and triptolide-induced liver-injured rats. Open Life Sci 2021; 16:184-197. [PMID: 33817310 PMCID: PMC7968544 DOI: 10.1515/biol-2021-0016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/23/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022] Open
Abstract
Tripterygium wilfordii multiglucoside (TWM) is a fat-soluble extract from a Chinese herb T. wilfordii, that’s used in treating rheumatoid arthritis, nephrotic syndrome and other skin diseases. Triptolide (TP) is a major active component in TWM. However, clinical applications of TWM are limited by its various toxicities especially hepatotoxicity. In recent studies, it has been reported that drug-induced liver injury (DILI) could induce the disorder of lipid metabolism in animals. Hence, this study focuses on the metabolic profile of fatty acids in TWM- and TP-induced liver-injured rats. In serum and liver tissue, 16 free and 16 esterified fatty acids were measured by gas chromatography coupled with mass spectrometry. Metabolic profile of serum fatty acids in rats with liver injury was identified by multivariate statistical analysis. The fatty acid levels in the serum of TWM- and TP-treated rats significantly decreased, whereas those in the liver tissue of TWM- and TP-treated rats obviously increased when compared with the vehicle-treated rats. Four free fatty acids were identified as candidate biomarkers of TWM- and TP-induced liver injury. Therefore, the targeted metabolomic method may be used as a complementary approach for DILI diagnosis in clinic.
Collapse
Affiliation(s)
- Xiaojie Liu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China
| | - Cong Hu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China
| | - Hongwei Li
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China
| | - Linjing Wu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China
| | - Yinhua Xiong
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China
| | - Xilan Tang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China
| | - Siyu Deng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China
| |
Collapse
|