1
|
Pugliatti P, Trimarchi G, Barocelli F, Pizzino F, Di Spigno F, Tedeschi A, Piccione MC, Irrera P, Aschieri D, Niccoli G, Paradossi U, Di Bella G. Advancing Cardiac Amyloidosis Care Through Insights from Cardiopulmonary Exercise Testing. J Clin Med 2024; 13:7285. [PMID: 39685743 DOI: 10.3390/jcm13237285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/25/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Cardiac amyloidosis, encompassing both transthyretin (ATTR) and light-chain (AL) types, poses considerable challenges in patient management due to its intricate pathophysiology and progressive course. This narrative review elucidates the pivotal role of cardiopulmonary exercise testing (CPET) in the assessment of these patients. CPET is essential for evaluating disease progression by measuring cardio-respiratory performance and providing prognostic insights. This functional test is crucial not only for tracking the disease trajectory, but also for assessing the effectiveness of disease-modifying therapies. Moreover, CPET facilitates the customization of therapeutic strategies based on individual patient performance, enhancing personalized care. By objectively measuring parameters such as peak oxygen uptake (VO2 peak), ventilatory efficiency, and exercise capacity, clinicians can gain a deeper understanding of the degree of functional impairment and make informed decisions regarding treatment initiation, adjustment, and anticipated outcomes. This review emphasizes the importance of CPET in advancing personalized medicine approaches, ultimately striving to improve the quality of life and clinical outcomes for patients with cardiac amyloidosis.
Collapse
Affiliation(s)
- Pietro Pugliatti
- Department of Clinical and Experimental Medicine, University of Messina, 98100 Messina, Italy
| | - Giancarlo Trimarchi
- Department of Clinical and Experimental Medicine, University of Messina, 98100 Messina, Italy
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | | | - Fausto Pizzino
- Fondazione Toscana G. Monasterio, Ospedale del Cuore G, Pasquinucci, 54100 Massa, Italy
| | - Francesco Di Spigno
- Cardiology Unit of Emergency Department, Guglielmo da Saliceto Hospital, 29121 Piacenza, Italy
| | - Andrea Tedeschi
- Cardiology Unit of Emergency Department, Guglielmo da Saliceto Hospital, 29121 Piacenza, Italy
| | - Maurizio Cusmà Piccione
- Department of Clinical and Experimental Medicine, University of Messina, 98100 Messina, Italy
| | - Pierangela Irrera
- Department of Clinical and Experimental Medicine, University of Messina, 98100 Messina, Italy
| | - Daniela Aschieri
- Cardiology Unit of Emergency Department, Guglielmo da Saliceto Hospital, 29121 Piacenza, Italy
| | - Giampaolo Niccoli
- Cardiology Division, Parma University Hospital, 43126 Parma, Italy
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
| | - Umberto Paradossi
- Fondazione Toscana G. Monasterio, Ospedale del Cuore G, Pasquinucci, 54100 Massa, Italy
| | - Gianluca Di Bella
- Department of Clinical and Experimental Medicine, University of Messina, 98100 Messina, Italy
| |
Collapse
|
2
|
Salzillo C, Franco R, Ronchi A, Quaranta A, Marzullo A. Cardiac Amyloidosis: State-of-the-Art Review in Molecular Pathology. Curr Issues Mol Biol 2024; 46:11519-11536. [PMID: 39451564 PMCID: PMC11506355 DOI: 10.3390/cimb46100684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/05/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Amyloidosis refers to a group of diseases caused by extracellular deposits of misfolded proteins, which alter tissue function and structure, potentially affecting any organ. The term "amyloid" was introduced in the 19th century and later associated with pathological protein deposits. Amyloid fibrils, which are insoluble and resistant to degradation, originate from soluble proteins that undergo misfolding. This process can be triggered by several factors, such as aging, elevated protein concentrations, or pathogenic variants. Amyloid deposits damage organs both by disrupting tissue architecture and through direct cytotoxic effects, leading to conditions such as heart failure. Amyloidosis can be classified into acquired or inherited forms and can be systemic or localized. Diagnosing cardiac amyloidosis is complex and often requires tissue biopsies, which are supported by Congo Red dye staining. In some cases, bisphosphonate bone scans may provide a less invasive diagnostic option. In this state-of-the-art review, we focus on the most common forms of cardiac amyloidosis, from epidemiology to therapy, emphasizing the differences in molecular mechanisms and the importance of pathological diagnosis for appropriate treatment using a multidisciplinary approach.
Collapse
Affiliation(s)
- Cecilia Salzillo
- Department of Experimental Medicine, PhD Course in Public Health, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Department of Precision and Regenerative Medicine and Ionian Area, Pathology Unit, University of Bari “Aldo Moro”, 70121 Bari, Italy;
| | - Renato Franco
- Department of Mental and Physical Health and Preventive Medicine, Pathology Unit, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.F.); (A.R.)
| | - Andrea Ronchi
- Department of Mental and Physical Health and Preventive Medicine, Pathology Unit, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.F.); (A.R.)
| | - Andrea Quaranta
- Department of Precision and Regenerative Medicine and Ionian Area, Pathology Unit, University of Bari “Aldo Moro”, 70121 Bari, Italy;
| | - Andrea Marzullo
- Department of Precision and Regenerative Medicine and Ionian Area, Pathology Unit, University of Bari “Aldo Moro”, 70121 Bari, Italy;
| |
Collapse
|
3
|
Bézard M, Zaroui A, Kharoubi M, Lam F, Poullot E, Teiger E, Agbulut O, Damy T, Kordeli E. Internalisation of immunoglobulin light chains by cardiomyocytes in AL amyloidosis: what can biopsies tell us? Amyloid 2024; 31:209-219. [PMID: 38973117 DOI: 10.1080/13506129.2024.2373748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/09/2024]
Abstract
BACKGROUND Cardiac involvement in systemic light chain amyloidosis (AL) leads to chronic heart failure and is a major prognosis factor. Severe cellular defects are provoked in cardiac cells by tissue-deposited amyloid fibrils of misfolded free immunoglobulin light chains (LCs) and their prefibrillar oligomeric precursors. OBJECTIVE Understanding the molecular mechanisms behind cardiac cell cytotoxicity is necessary to progress in therapy and to improve patient management. One key question is how extracellularly deposited molecules exert their toxic action inside cardiac cells. Here we searched for direct evidence of amyloid LC uptake by cardiomyocytes in patient biopsies. METHODS We immunolocalized LCs in cardiac biopsies from four AL cardiac amyloidosis patients and analysed histopathological images by high resolution confocal microscopy and 3D image reconstruction. RESULTS We show, for the first time directly in patient tissue, the presence of LCs inside cardiomyocytes, and report their proximity to nuclei and to caveolin-3-rich areas. Our observations point to macropinocytosis as a probable mechanism of LC uptake. CONCLUSIONS Internalisation of LCs occurs in patient cardiomyocytes. This event could have important consequences for the pathogenesis of the cardiac disease by enabling interactions between amyloid molecules and cellular organelles inducing specific signalling pathways, and might bring new insight regarding treatment.
Collapse
Affiliation(s)
- Mélanie Bézard
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, INSERM U1164, Biological Adaptation and Ageing, Paris-France
- Department of Cardiology and French Referral Centre for Cardiac Amyloidosis, Henri-Mondor Hospital, AP-HP, Université Paris Est Creteil, Inserm U955, IMRB, Créteil, France
| | - Amira Zaroui
- Department of Cardiology and French Referral Centre for Cardiac Amyloidosis, Henri-Mondor Hospital, AP-HP, Université Paris Est Creteil, Inserm U955, IMRB, Créteil, France
| | - Mounira Kharoubi
- Department of Cardiology and French Referral Centre for Cardiac Amyloidosis, Henri-Mondor Hospital, AP-HP, Université Paris Est Creteil, Inserm U955, IMRB, Créteil, France
| | - France Lam
- Sorbonne Université, I2PS, Imaging Core Facility, Institut de Biologie Paris-Seine (IBPS), Paris-France
| | - Elsa Poullot
- Department of Anatomopathology, Henri-Mondor Hospital, AP-HP, Créteil, France
| | - Emmanuel Teiger
- Department of Cardiology and French Referral Centre for Cardiac Amyloidosis, Henri-Mondor Hospital, AP-HP, Université Paris Est Creteil, Inserm U955, IMRB, Créteil, France
| | - Onnik Agbulut
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, INSERM U1164, Biological Adaptation and Ageing, Paris-France
| | - Thibaud Damy
- Department of Cardiology and French Referral Centre for Cardiac Amyloidosis, Henri-Mondor Hospital, AP-HP, Université Paris Est Creteil, Inserm U955, IMRB, Créteil, France
| | - Ekaterini Kordeli
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, INSERM U1164, Biological Adaptation and Ageing, Paris-France
| |
Collapse
|
4
|
Charalampous C, Dasari S, McPhail E, Theis JD, Vrana JA, Dispenzieri A, Leung N, Muchtar E, Gertz M, Ramirez-Alvarado M, Kourelis T. A proteomic atlas of kidney amyloidosis provides insights into disease pathogenesis. Kidney Int 2024; 105:484-495. [PMID: 38096952 PMCID: PMC10922603 DOI: 10.1016/j.kint.2023.11.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 10/04/2023] [Accepted: 11/05/2023] [Indexed: 01/18/2024]
Abstract
The mechanisms of tissue damage in kidney amyloidosis are not well described. To investigate this further, we used laser microdissection-mass spectrometry to identify proteins deposited in amyloid plaques (expanded proteome) and proteins overexpressed in plaques compared to controls (plaque-specific proteome). This study encompassed 2650 cases of amyloidosis due to light chain (AL), heavy chain (AH), leukocyte chemotactic factor-2-type (ALECT2), secondary (AA), fibrinogen (AFib), apo AIV (AApoAIV), apo CII (AApoCII) and 14 normal/disease controls. We found that AFib, AA, and AApoCII have the most distinct proteomes predominantly driven by increased complement pathway proteins. Clustering of cases based on the expanded proteome identified two ALECT2 and seven AL subtypes. The main differences within the AL and ALECT2 subtypes were driven by complement proteins and, for AL only, 14-3-3 family proteins (a family of structurally similar phospho-binding proteins that regulate major cellular functions) widely implicated in kidney tissue dysfunction. The kidney AL plaque-specific proteome consisted of 24 proteins, including those implicated in kidney damage (α1 antitrypsin and heat shock protein β1). Hierarchical clustering of AL cases based on their plaque-specific proteome identified four clusters, of which one was associated with improved kidney survival and was characterized by higher overall proteomic content and 14-3-3 proteins but lower levels of light chains and most signature proteins. Thus, our results suggest that there is significant heterogeneity across and within amyloid types, driven predominantly by complement proteins, and that the plaque protein burden does not correlate with amyloid toxicity.
Collapse
Affiliation(s)
| | - Surendra Dasari
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Ellen McPhail
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jason D Theis
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Julie A Vrana
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Nelson Leung
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| | - Eli Muchtar
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| | - Morie Gertz
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | |
Collapse
|
5
|
Molecular Mechanisms of Cardiac Amyloidosis. Int J Mol Sci 2021; 23:ijms23010025. [PMID: 35008444 PMCID: PMC8744761 DOI: 10.3390/ijms23010025] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/18/2021] [Accepted: 12/18/2021] [Indexed: 12/22/2022] Open
Abstract
Cardiac involvement has a profound effect on the prognosis of patients with systemic amyloidosis. Therapeutic methods for suppressing the production of causative proteins have been developed for ATTR amyloidosis and AL amyloidosis, which show cardiac involvement, and the prognosis has been improved. However, a method for removing deposited amyloid has not been established. Methods for reducing cytotoxicity caused by amyloid deposition and amyloid precursor protein to protect cardiovascular cells are also needed. In this review, we outline the molecular mechanisms and treatments of cardiac amyloidosis.
Collapse
|