1
|
Lee SF, Kennedy SKF, Caini S, Wong HCY, Yip PL, Poortmans PM, Meattini I, Kaidar-Person O, Recht A, Hijal T, Torres MA, Cao JQ, Corbin KS, Choi JI, Koh WY, Kwan JYY, Karam I, Chan AW, Chow E, Marta GN. Randomised controlled trials on radiation dose fractionation in breast cancer: systematic review and meta-analysis with emphasis on side effects and cosmesis. BMJ 2024; 386:e079089. [PMID: 39260879 PMCID: PMC11388113 DOI: 10.1136/bmj-2023-079089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 09/13/2024]
Abstract
OBJECTIVE To provide a comprehensive assessment of various fractionation schemes in radiation therapy for breast cancer, with a focus on side effects, cosmesis, quality of life, risks of recurrence, and survival outcomes. DESIGN Systematic review and meta-analysis. DATA SOURCES Ovid MEDLINE, Embase, and Cochrane Central Register of Controlled Trials (from inception to 23 October 2023). STUDY SELECTION Included studies were randomised controlled trials focusing on conventional fractionation (CF; daily fractions of 1.8-2 Gy, reaching a total dose of 50-50.4 Gy over 5-6 weeks), moderate hypofractionation (MHF; fraction sizes of 2.65-3.3 Gy for 13-16 fractions over 3-5 weeks), and/or ultra-hypofractionation (UHF; schedule of only 5 fractions). DATA EXTRACTION Two independent investigators screened studies and extracted data. Risk of bias and quality of evidence were assessed using the Cochrane Collaboration's tool and the GRADE (Grading of Recommendations, Assessment, Development, and Evaluations) approach, respectively. DATA SYNTHESIS Pooled risk ratios (RRs) and hazard ratios (HRs) with 95% confidence intervals (CIs) were calculated using a random effects model. Heterogeneity was analysed using Cochran's Q test and I2 statistic. Network meta-analysis was used to integrate all available evidence. MAIN OUTCOME MEASURES The pre-specified primary outcome was grade ≥2 acute radiation dermatitis and late radiation therapy related side effects; secondary outcomes included cosmesis, quality of life, recurrence, and survival metrics. RESULTS From 1754 studies, 59 articles representing 35 trials (20 237 patients) were assessed; 21.6% of outcomes showed low risk of bias, whereas 78.4% had some concerns or high risk, particularly in outcome measurement (47.4%). The RR for grade ≥2 acute radiation dermatitis for MHF compared with CF was 0.54 (95% CI 0.49 to 0.61; P<0.001) and 0.68 (0.49 to 0.93; P=0.02) following breast conserving therapy and mastectomy, respectively. Hyperpigmentation and grade ≥2 breast shrinkage were less frequent after MHF than after CF, with RRs of 0.77 (0.62 to 0.95; P=0.02) and 0.92 (0.85 to 0.99; P=0.03), respectively, in the combined breast conserving therapy and mastectomy population. However, in the breast conserving therapy only trials, these differences in hyperpigmentation (RR 0.79, 0.60 to 1.03; P=0.08) and breast shrinkage (0.94, 0.83 to 1.07; P=0.35) were not statistically significant. The RR for grade ≥2 acute radiation dermatitis for UHF compared with MHF was 0.85 (0.47 to 1.55; P=0.60) for breast conserving therapy and mastectomy patients combined. MHF was associated with improved cosmesis and quality of life compared with CF, whereas data on UHF were less conclusive. Survival and recurrence outcomes were similar between UHF, MHF, and CF. CONCLUSIONS MHF shows improved safety profile, cosmesis, and quality of life compared with CF while maintaining equivalent oncological outcomes. Fewer randomised controlled trials have compared UHF with other fractionation schedules, but its safety and oncological effectiveness seem to be similar with short term follow-up. Given the advantages of reduced treatment time, enhanced convenience for patients, and potential cost effectiveness, MHF and UHF should be considered as preferred options over CF in appropriate clinical settings, with further research needed to solidify these findings. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42023460249.
Collapse
Affiliation(s)
- Shing Fung Lee
- Department of Radiation Oncology, National University Cancer Institute, National University Hospital, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Samantha K F Kennedy
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Saverio Caini
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPO), Florence, Italy
| | - Henry C Y Wong
- Department of Oncology, Princess Margaret Hospital, Hospital Authority, Hong Kong
| | - Pui Lam Yip
- Department of Radiation Oncology, National University Cancer Institute, National University Hospital, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Clinical Oncology, Tuen Mun Hospital, New Territories West Cluster, Hospital Authority, Hong Kong
| | - Philip M Poortmans
- Department of Radiation Oncology, Iridium Netwerk, Wilrijk-Antwerp, Belgium
- Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk-Antwerp, Belgium
| | - Icro Meattini
- Department of Experimental and Clinical Biomedical Sciences "M Serio", University of Florence, Florence, Italy
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Orit Kaidar-Person
- Breast Cancer Radiation Therapy Unit, Sheba Medical Center, Ramat Gan, Israel
- School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- GROW-School for Oncology and Reproductive (Maastro), Maastricht University, Maastricht, Netherlands
| | - Abram Recht
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Tarek Hijal
- Division of Radiation Oncology, McGill University Health Centre, Montreal, QC, Canada
| | - Mylin A Torres
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Jeffrey Q Cao
- Section of Radiation Oncology, Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | | | - J Isabelle Choi
- Department of Radiation Oncology, New York Proton Center and Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wee Yao Koh
- Department of Radiation Oncology, National University Cancer Institute, National University Hospital, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jennifer Y Y Kwan
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Irene Karam
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Adrian W Chan
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Edward Chow
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Gustavo N Marta
- Department of Radiation Oncology, Hospital Sírio-Libanês, São Paulo, Brazil
- Latin America Cooperative Oncology Group, Porto Alegre, Brazil
- Postgraduate Program, Department of Radiology and Oncology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Sun Y, Saulsberry L, Liao C, Hedeker D, Huo D. Geographic and Physician-Level Variation in the Use of Hypofractionated Radiation Therapy for Breast Cancer in the U.S.: A Cross-Classified Multilevel Analysis. Adv Radiat Oncol 2024; 9:101487. [PMID: 38725638 PMCID: PMC11078635 DOI: 10.1016/j.adro.2024.101487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/24/2024] [Indexed: 05/12/2024] Open
Abstract
Purpose We aimed to assess geographic and physician-level variation for hypofractionated whole-breast irradiation (HF-WBI) use for early-stage breast cancer patients in the United States. We further evaluated the association between HF-WBI use and demographic factors after accounting for these variations. Methods and Materials We performed a retrospective study of early-stage breast cancer patients using private employer-sponsored insurance claims from 2008 to 2017. Patients were clustered according to geographic level and by radiation oncologist. Bayesian cross-classified multilevel logistic models were used to examine the geographic heterogeneity and variation of radiation oncologists simultaneously. Intracluster correlation coefficient (ICC) and median odds ratios (MOR) were calculated to quantify the variation at different levels. We also used the cross-classified model to identify patient demographic factors associated with receiving HF-WBI. Results The study included 79,747 women (74.0%) who received conventionally fractionated whole-breast irradiation (CF-WBI) and 27,999 women (26.0%) who underwent HF-WBI. HF-WBI adoption increased significantly across time (2008-2017). The variation in HF-WBI utilization was attributed mostly to physician-level variability (MOR = 2.59). The variability of HF-WBI utilization across core-based statistical areas (CBSAs) (MOR = 1.55) was found to be the strongest among all geographic classifications. After accounting for variability in both CBSAs and radiation oncologists, age, receiving chemotherapy, and several community-level factors, including distance from home to facility, community education level, and racial composition, were found to be associated with HF-WBI utilization. Conclusion This study demonstrated geographic and physician-level heterogeneity in the use of HF-WBI among early-stage breast cancer patients. HF-WBI utilization was also found to be associated with patient and community-level characteristics. Given observed physician-level variability, intervention through continuing medical education could help doctors to better understand the advantages of HF-WBI and promote the adoption of HF-WBI in the U.S. Influence of physician-level characteristics on HF-WBI utilization merits further study.
Collapse
Affiliation(s)
- Yijia Sun
- Department of Public Health Sciences, The University of Chicago, Chicago, Illinois
| | - Loren Saulsberry
- Department of Public Health Sciences, The University of Chicago, Chicago, Illinois
| | - Chuanhong Liao
- Department of Public Health Sciences, The University of Chicago, Chicago, Illinois
| | - Donald Hedeker
- Department of Public Health Sciences, The University of Chicago, Chicago, Illinois
| | - Dezheng Huo
- Department of Public Health Sciences, The University of Chicago, Chicago, Illinois
| |
Collapse
|