1
|
Horn A, Wagner AS, Hou Y, Zajac JC, Fister AM, Chen Z, Pashaj J, Junak M, Mercado Soto NM, Gibson A, Huttenlocher A. Isotonic medium treatment limits burn wound microbial colonisation and improves tissue repair. Wound Repair Regen 2025; 33:e13242. [PMID: 39654306 PMCID: PMC11628904 DOI: 10.1111/wrr.13242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/25/2024] [Accepted: 11/20/2024] [Indexed: 12/13/2024]
Abstract
Burn injuries undergo a complex healing process in which progressive spreading of epithelial damage can lead to secondary complications such as wound infection, which is a major driver of mortality among burn patients. We recently reported that burning larval zebrafish triggers dysregulated keratinocyte dynamics compared to mechanical injury. Here, we investigate keratinocyte behaviour following burn injury and the subsequent potential for microbial colonisation of burn wounds over time. Real-time imaging, coupled with tracking of photoconverted cells, revealed that early keratinocyte motility contributes to the spread of epithelial damage beyond the initial site of burn injury and that increased epithelial damage was associated with wound colonisation by the fungal pathogen Candida albicans. Modulating osmotic balance by treating larval zebrafish with isotonic medium limited the spread of epithelial damage and reduced microbial colonisation of burn wounds. Using cultured human skin, we found that topical treatment with isotonic solution (saline) similarly prevented the spread of epithelial damage over time. These findings indicate that keratinocyte behaviour contributes to burn wound progression in larval zebrafish and links keratinocyte dynamics to microbial colonisation of burn wounded tissue.
Collapse
Affiliation(s)
- Adam Horn
- Department of Medical Microbiology and Immunology, School of Medicine and Public HealthUniversity of WisconsinMadisonWisconsinUSA
| | - Andrew S. Wagner
- Department of Medical Microbiology and Immunology, School of Medicine and Public HealthUniversity of WisconsinMadisonWisconsinUSA
| | - Yiran Hou
- Department of Medical Microbiology and Immunology, School of Medicine and Public HealthUniversity of WisconsinMadisonWisconsinUSA
| | - Jocelyn C. Zajac
- Department of Surgery, School of Medicine and Public HealthUniversity of WisconsinMadisonWisconsinUSA
| | - Alexandra M. Fister
- Department of Medical Microbiology and Immunology, School of Medicine and Public HealthUniversity of WisconsinMadisonWisconsinUSA
- Cellular and Molecular Biology Graduate Program, School of Medicine and Public HealthUniversity of WisconsinMadisonWisconsinUSA
| | - Zhili Chen
- Department of Medical Microbiology and Immunology, School of Medicine and Public HealthUniversity of WisconsinMadisonWisconsinUSA
- Cellular and Molecular Biology Graduate Program, School of Medicine and Public HealthUniversity of WisconsinMadisonWisconsinUSA
| | - Joana Pashaj
- Department of Surgery, School of Medicine and Public HealthUniversity of WisconsinMadisonWisconsinUSA
| | - Mary Junak
- Department of Surgery, School of Medicine and Public HealthUniversity of WisconsinMadisonWisconsinUSA
| | - Nayanna M. Mercado Soto
- Microbiology Doctoral Training Program, School of Medicine and Public HealthUniversity of WisconsinMadisonWisconsinUSA
| | - Angela Gibson
- Department of Surgery, School of Medicine and Public HealthUniversity of WisconsinMadisonWisconsinUSA
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, School of Medicine and Public HealthUniversity of WisconsinMadisonWisconsinUSA
- Department of Pediatrics, School of Medicine and Public HealthUniversity of WisconsinMadisonWisconsinUSA
| |
Collapse
|
2
|
Shi S, Ou X, Long J, Lu X, Xu S, Zhang L. Nanoparticle-Based Therapeutics for Enhanced Burn Wound Healing: A Comprehensive Review. Int J Nanomedicine 2024; 19:11213-11233. [PMID: 39513089 PMCID: PMC11542498 DOI: 10.2147/ijn.s490027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024] Open
Abstract
Burn wounds pose intricate clinical challenges due to their severity and high risk of complications, demanding advanced therapeutic strategies beyond conventional treatments. This review discusses the application of nanoparticle-based therapies for optimizing burn wound healing. We explore the critical phases of burn wound healing, including inflammation, proliferation, and remodeling, while summarizing key nanoparticle-based strategies that influence these processes to optimize healing. Various nanoparticles, such as metal-based, polymer-based, and extracellular vesicles, are evaluated for their distinctive properties and mechanisms of action, including antimicrobial, anti-inflammatory, and regenerative effects. Future directions are highlighted, focusing on personalized therapies and the integration of sophisticated drug delivery systems, emphasizing the transformative potential of nanoparticles in enhancing burn wound treatment.
Collapse
Affiliation(s)
- Shaoyan Shi
- Department of Hand Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an Honghui Hospital North District, Xi’an, Shaanxi, 710000, People’s Republic of China
| | - Xuehai Ou
- Department of Hand Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an Honghui Hospital North District, Xi’an, Shaanxi, 710000, People’s Republic of China
| | - Jiafeng Long
- Department of Hand Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an Honghui Hospital North District, Xi’an, Shaanxi, 710000, People’s Republic of China
| | - Xiqin Lu
- Department of Hand Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an Honghui Hospital North District, Xi’an, Shaanxi, 710000, People’s Republic of China
| | - Siqi Xu
- Department of Hand Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an Honghui Hospital North District, Xi’an, Shaanxi, 710000, People’s Republic of China
| | - Li Zhang
- Department of Hand Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an Honghui Hospital North District, Xi’an, Shaanxi, 710000, People’s Republic of China
| |
Collapse
|
3
|
Tombulturk FK, Soydas T, Kanigur-Sultuybek G. Metformin as a Modulator of Autophagy and Hypoxia Responses in the Enhancement of Wound Healing in Diabetic Rats. Inflammation 2024:10.1007/s10753-024-02129-9. [PMID: 39186177 DOI: 10.1007/s10753-024-02129-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/28/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
The molecular mechanisms underlying delayed wound repair in diabetes involve dysregulation of key cellular processes, including autophagy and hypoxia response pathways. Herein, we investigated the role of topical metformin, an established anti-diabetic drug with potential autophagy-inducing properties, in improving wound healing outcomes under hypoxic conditions. Full-thickness skin wounds were created in streptozotocin-induced diabetic rats, and tissue samples were collected at regular intervals for molecular and histological analysis. The expression levels of autophagy markers LC3B and Beclin-1 were evaluated via immunohistochemistry and qRT-PCR, while the amount of AMP-activated protein kinase (AMPK) and hypoxia-inducible factor-1α (HIF-1α) were determined via ELISA. Our results demonstrated that metformin administration resulted in the upregulation of LC3B and Beclin-1 in the wound bed, suggesting induction of autophagy in response to the treatment. Mechanistically, metformin treatment also led to the increased amount of AMPK, a critical regulator of cellular energy homeostasis, and a subsequent reduction in HIF-1α amount under hypoxic conditions. In conclusion, our findings demonstrate that metformin promotes wound healing in diabetes mellitus by enhancing autophagy through AMPK activation and modulating HIF-1α amount in a hypoxic microenvironment. This study offers a new therapeutic approach by shedding light on the potential benefits of metformin as adjunctive therapy in diabetic wound management.
Collapse
Affiliation(s)
- Fatma Kubra Tombulturk
- Department of Medical Laboratory Techniques, Vocational School of Health Services, Istinye University, Istanbul, Türkiye.
| | - Tugba Soydas
- Department of Medical Biology and Genetics, Medical Faculty, Istanbul Aydin University, Istanbul, Türkiye
| | - Gönül Kanigur-Sultuybek
- Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Türkiye
| |
Collapse
|
4
|
Farzanbakhsh S, Shahrbaf MA, Madani H, Dahmardei M, Sadri B, Vosough M. A single-center, open-labeled, randomized, 6-month, parallel-group study to assess the safety and efficacy of allogeneic cultured keratinocyte sheet transplantation for deep second-degree burn wounds: rationale and design of phase I/II clinical trial. Trials 2024; 25:226. [PMID: 38556879 PMCID: PMC10983673 DOI: 10.1186/s13063-024-08070-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 03/20/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Burn-related injuries are a major global health issue, causing 180,000 deaths per year. Early debridement of necrotic tissue in association with a split-thickness skin graft is usually administered for some of the 2nd- and 3rd-degree injuries. However, this approach can be complicated by factors such as a lack of proper donor sites. Artificial skin substitutes have attracted much attention for burn-related injuries. Keratinocyte sheets are one of the skin substitutes that their safety and efficacy have been reported by previous studies. METHODS Two consecutive clinical trials were designed, one of them is phase I, a non-randomized, open-label trial with 5 patients, and phase II is a randomized and open-label trial with 35 patients. A total number of 40 patients diagnosed with 2nd-degree burn injury will receive allogenic keratinocyte sheet transplantation. The safety and efficacy of allogeneic skin graft with autograft skin transplantation and conventional treatments, including Vaseline dressing and topical antibiotic, will be compared in different wounds of a single patient in phase II. After the transplantation, patients will be followed up on days 3, 7, 10, 14, 21, and 28. In the 3rd and 6th months after the transplantation scar, a wound closure assessment will be conducted based on the Vancouver Scar Scale and the Patient and Observer Scar Assessment Scale. DISCUSSION This study will explain the design and rationale of a cellular-based skin substitute for the first time in Iran. In addition, this work proposes this product being registered as an off-the-shelf product for burn wound management in the country. TRIAL REGISTRATION Iranian Registry of Clinical Trials (IRCT) IRCT20080728001031N31, 2022-04-23 for phase I and IRCT20080728001031N36, 2024-03-15 for phase II.
Collapse
Affiliation(s)
- Shayan Farzanbakhsh
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad Amin Shahrbaf
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hoda Madani
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mostafa Dahmardei
- Department of Plastic & Reconstructive Surgery, School of Medicine, Stem Cell and Regenerative Medicine Research Center, Shahid Motahari Burns Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Bahareh Sadri
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
5
|
Christy S, Carlsson AH, Larson D, Davenport GJ, Glenn JF, Brumfield R, Avina G, Jockheck-Clark A, Christy RJ, Nuutila K. Topical Noneuphoric Phytocannabinoid Elixir 14 Reduces Inflammation and Mitigates Burn Progression. J Surg Res 2024; 296:447-455. [PMID: 38320364 DOI: 10.1016/j.jss.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 02/08/2024]
Abstract
INTRODUCTION Thermal injuries are caused by exposure to a wide variety of agents including heat, electricity, radiation, chemicals, and friction. Early intervention can decrease injury severity by preventing excess inflammation and mitigating burn wound progression for improved healing outcomes. Previous studies have demonstrated that cannabinoids can trigger anti-inflammatory responses and promote wound closure. Therefore, the purpose of this study was to investigate whether a topical application of Noneuphoric Phytocannabinoid Elixir 14 (NEPE14) containing a full complement of phytocannabinoids (< 0.3% delta-9-tetrahydrocannabinol or cannabidiol) and other phytochemicals would mitigate burn wound progression in the treatment of deep partial-thickness burn wounds. METHODS Deep partial-thickness burns were created on the dorsum of four anesthetized pigs and treated with NEPE14, Vehicle control, Silverlon, or gauze. The burns were assessed on postburn days 4, 7, and 14. Assessments consisted of digital photographs, Laser-Speckle imagery (blood perfusion), MolecuLight imagery (qualitative bacterial load), and biopsies for histology and immunohistochemistry (interleukin six and tumor necrosis factor-α). RESULTS Topical treatment with NEPE14 significantly (P < 0.001) decreased inflammation (interleukin six and tumor necrosis factor-α) in comparison to control groups. It was also demonstrated that the reduction in inflammation led to mitigation of burn wound progression. In terms of wound healing and presence of bacteria, no statistically significant differences were observed. CONCLUSIONS Topical treatment of deep partial-thickness burns with NEPE14 decreased wound inflammation and mitigated burn wound progression in comparison to control treatments.
Collapse
Affiliation(s)
| | - Anders H Carlsson
- Metis Foundation, San Antonio, Texas; United States Army Institute of Surgical Research, Fort Sam Houston, Texas
| | - David Larson
- Metis Foundation, San Antonio, Texas; United States Army Institute of Surgical Research, Fort Sam Houston, Texas
| | | | | | | | | | | | - Robert J Christy
- United States Army Institute of Surgical Research, Fort Sam Houston, Texas
| | - Kristo Nuutila
- United States Army Institute of Surgical Research, Fort Sam Houston, Texas.
| |
Collapse
|
6
|
Milner SM. Classification of Burn Depth. EPLASTY 2024; 24:QA5. [PMID: 38501145 PMCID: PMC10948199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Affiliation(s)
- Stephen M Milner
- Professor of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD (Ret.)
| |
Collapse
|
7
|
Huang C, Dong L, Zhao B, Huang S, Lu Y, Zhang X, Hu X, Huang Y, He W, Xu Y, Qian W, Luo G. Tunable Sulfated Alginate-based Hydrogel Platform with enhanced anti-inflammatory and antioxidant capacity for promoting burn wound repair. J Nanobiotechnology 2023; 21:387. [PMID: 37875922 PMCID: PMC10594798 DOI: 10.1186/s12951-023-02144-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023] Open
Abstract
Amidst progressive advancements in tissue engineering, there has been a significant enhancement in the efficacy of anti-inflammatory hydrogel dressings, addressing a myriad of clinical challenges on wound healing. A frequent complication during the initial stages of deep second-degree burn wound healing is the onset of an inflammatory storm, typically occurring without effective intervention. This event disrupts normal biological healing sequences, leading to undesirable regression. In response, we have customized a tunable, multidimensional anti-inflammatory hydrogel platform based on sulfated alginates (Algs), loaded with Prussian blue (PB) nanozymes. This platform competently eliminates surplus reactive oxygen species (ROS) present in the wound bed. Algs, functioning as a mimic of sulfated glycosaminoglycans (including heparin, heparan sulfate, and chondroitin sulfate) in the extracellular matrices (ECM), demonstrate a high affinity towards inflammatory chemokines such as interleukin-8 (IL-8) and monocyte chemotactic protein-1 (MCP-1). This affinity effectively impedes the infiltration of inflammatory cells into the wound. Concurrently, Algs markedly modulate the macrophage phenotype transition from M1 to M2. Ultimately, our potent anti-inflammatory hydrogels, which strategically target inflammatory chemokines, M1 macrophages, and ROS, successfully attenuate dysregulated hyperinflammation in wound sites. Precise immunomodulation administered to deep second-degree burn wounds in mice has demonstrated promotion of neovascular maturation, granulation tissue formation, collagen deposition, and wound closure. Our biomimetic hydrogels, therefore, represent a significant expansion in the repertoire of anti-inflammatory strategies available for clinical practice.
Collapse
Affiliation(s)
- Can Huang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Southwest Hospital, Army Medical University, Chongqing, 400038, China
- Department of Burns and Plastic Surgery, the 910th Hospital of Joint Logistic Force of Chinese People's Liberation Army, Quanzhou, 362000, Fujian, China
| | - Lanlan Dong
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Baohua Zhao
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Shurun Huang
- Department of Burns and Plastic Surgery, the 910th Hospital of Joint Logistic Force of Chinese People's Liberation Army, Quanzhou, 362000, Fujian, China
| | - Yifei Lu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Xiaorong Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Xiaohong Hu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Yong Huang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Weifeng He
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Yong Xu
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215006, P. R. China.
| | - Wei Qian
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
| | - Gaoxing Luo
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|