1
|
Hosseini-Siyanaki M, Sagdic HS, Raviprasad AG, Munjerin SE, Prodigios JC, Anthony EY, Hochhegger B, Forghani R. Multi-Energy Evaluation of Image Quality in Spectral CT Pulmonary Angiography Using Different Strength Deep Learning Spectral Reconstructions. Acad Radiol 2024:S1076-6332(24)00894-8. [PMID: 39732618 DOI: 10.1016/j.acra.2024.11.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/07/2024] [Accepted: 11/18/2024] [Indexed: 12/30/2024]
Abstract
RATIONALE AND OBJECTIVES To evaluate and compare image quality of different energy levels of virtual monochromatic images (VMIs) using standard versus strong deep learning spectral reconstruction (DLSR) on dual-energy CT pulmonary angiogram (DECT-PA). MATERIALS AND METHODS A retrospective study was performed on 70 patients who underwent DECT-PA (15 PE present; 55 PE absent) scans. VMIs were reconstructed at different energy levels ranging from 35 to 200 keV using standard and strong levels with deep learning spectral reconstruction. Quantitative assessment was performed using region of interest (ROI) analysis of eleven different anatomical areas, measuring absolute attenuation, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR). In addition, CNR of clot compared to normally opacified lumen was calculated in cases that were positive for PE. For qualitative analysis, four different keV levels (40-60-80-100) were evaluated. RESULTS The image noise was significantly lower, and the cardiovascular SNR (24.9 ± 5.85 vs. 21.98 ± 5.49) and CNR (23.72 ± 8.00 vs. 20.31 ± 6.44) were significantly higher, on strong Deep Learning Spectral reconstruction (DLSR) than standard DLSR (p < 0.0001). PE-specific CNR (8.58 ± 4.47 vs. 6.25 ± 3.19) was significantly higher on strong DLSR than standard (p < 0.0001). The subjective image quality scores were diagnostically acceptable at four different keV levels (40-60-80-100 keV) evaluated using both standard and strong DLSR, with no qualitative differences observed at those energies. CONCLUSION Strong DLSR improves image quality with an increase of the SNR and CNR in DECT-PA compared to standard DLSR.
Collapse
Affiliation(s)
- Mohammadreza Hosseini-Siyanaki
- Radiomics and Augmented Intelligence Laboratory (RAIL), Department of Radiology and the Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, FL (M.H-S., H.S.S., A.G.R., S.E.M., J.C.P., E.Y.A., B.H., R.F.); Department of Radiology, University of Florida College of Medicine, Gainesville, FL (M.H-S., H.S.S., A.G.R., J.C.P., E.Y.A., B.H., R.F.)
| | - Hakki Serdar Sagdic
- Radiomics and Augmented Intelligence Laboratory (RAIL), Department of Radiology and the Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, FL (M.H-S., H.S.S., A.G.R., S.E.M., J.C.P., E.Y.A., B.H., R.F.); Department of Radiology, University of Florida College of Medicine, Gainesville, FL (M.H-S., H.S.S., A.G.R., J.C.P., E.Y.A., B.H., R.F.)
| | - Abheek G Raviprasad
- Radiomics and Augmented Intelligence Laboratory (RAIL), Department of Radiology and the Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, FL (M.H-S., H.S.S., A.G.R., S.E.M., J.C.P., E.Y.A., B.H., R.F.); Department of Radiology, University of Florida College of Medicine, Gainesville, FL (M.H-S., H.S.S., A.G.R., J.C.P., E.Y.A., B.H., R.F.)
| | - Sefat E Munjerin
- Radiomics and Augmented Intelligence Laboratory (RAIL), Department of Radiology and the Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, FL (M.H-S., H.S.S., A.G.R., S.E.M., J.C.P., E.Y.A., B.H., R.F.)
| | - Joice C Prodigios
- Radiomics and Augmented Intelligence Laboratory (RAIL), Department of Radiology and the Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, FL (M.H-S., H.S.S., A.G.R., S.E.M., J.C.P., E.Y.A., B.H., R.F.); Department of Radiology, University of Florida College of Medicine, Gainesville, FL (M.H-S., H.S.S., A.G.R., J.C.P., E.Y.A., B.H., R.F.)
| | - Evelyn Y Anthony
- Radiomics and Augmented Intelligence Laboratory (RAIL), Department of Radiology and the Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, FL (M.H-S., H.S.S., A.G.R., S.E.M., J.C.P., E.Y.A., B.H., R.F.); Department of Radiology, University of Florida College of Medicine, Gainesville, FL (M.H-S., H.S.S., A.G.R., J.C.P., E.Y.A., B.H., R.F.)
| | - Bruno Hochhegger
- Radiomics and Augmented Intelligence Laboratory (RAIL), Department of Radiology and the Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, FL (M.H-S., H.S.S., A.G.R., S.E.M., J.C.P., E.Y.A., B.H., R.F.); Department of Radiology, University of Florida College of Medicine, Gainesville, FL (M.H-S., H.S.S., A.G.R., J.C.P., E.Y.A., B.H., R.F.)
| | - Reza Forghani
- Radiomics and Augmented Intelligence Laboratory (RAIL), Department of Radiology and the Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, FL (M.H-S., H.S.S., A.G.R., S.E.M., J.C.P., E.Y.A., B.H., R.F.); Department of Radiology, University of Florida College of Medicine, Gainesville, FL (M.H-S., H.S.S., A.G.R., J.C.P., E.Y.A., B.H., R.F.); Division of Medical Physics, University of Florida College of Medicine, Gainesville, FL (R.F.); Department of Neurology, Division of Movement Disorders, University of Florida College of Medicine, Gainesville, FL (R.F.); Department of Otolaryngology - Head and Neck Surgery, McGill University, Montreal, Quebec, Canada (R.F.); Department of Radiology, AdventHealth Medical Group, Maitland, FL (R.F.).
| |
Collapse
|
2
|
Kerber B, Ensle F, Kroschke J, Strappa C, Larici AR, Frauenfelder T, Jungblut L. Assessment of Emphysema on X-ray Equivalent Dose Photon-Counting Detector CT: Evaluation of Visual Scoring and Automated Quantification Algorithms. Invest Radiol 2024:00004424-990000000-00257. [PMID: 39729642 DOI: 10.1097/rli.0000000000001128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
Abstract
OBJECTIVES The aim of this study was to evaluate the feasibility and efficacy of visual scoring, low-attenuation volume (LAV), and deep learning methods for estimating emphysema extent in x-ray dose photon-counting detector computed tomography (PCD-CT), aiming to explore future dose reduction potentials. METHODS One hundred one prospectively enrolled patients underwent noncontrast low- and chest x-ray dose CT scans in the same study using PCD-CT. Overall image quality, sharpness, and noise, as well as visual emphysema pattern (no, trace, mild, moderate, confluent, and advanced destructive emphysema; as defined by the Fleischner Society), were independently assessed by 2 experienced radiologists for low- and x-ray dose images, followed by an expert consensus read. In the second step, automated emphysema quantification was performed using an established LAV algorithm with a threshold of -950 HU and a commercially available deep learning model for automated emphysema quantification. Automated estimations of emphysema extent were converted and compared with visual scoring ratings. RESULTS X-ray dose scans exhibited a significantly lower computed tomography dose index than low-dose scans (low-dose: 0.66 ± 0.16 mGy, x-ray dose: 0.11 ± 0.03 mGy, P < 0.001). Interreader agreement between low- and x-ray dose for visual emphysema scoring was excellent (κ = 0.83). Visual emphysema scoring consensus showed good agreement between low-dose and x-ray dose scans (κ = 0.70), with significant and strong correlation (Spearman ρ = 0.79). Although trace emphysema was underestimated in x-ray dose scans, there was no significant difference in the detection of higher-grade (mild to advanced destructive) emphysema (P = 0.125) between the 2 scan doses. Although predicted emphysema volumes on x-ray dose scans for the LAV method showed strong and the deep learning model excellent significant correlations with predictions on low-dose scans, both methods significantly overestimated emphysema volumes on lower quality scans (P < 0.001), with the deep learning model being more robust. Further, deep learning emphysema severity estimations showed higher agreement (κ = 0.65) and correlation (Spearman ρ = 0.64) with visual scoring for low-dose scans than LAV predictions (κ = 0.48, Spearman ρ = 0.45). CONCLUSIONS The severity of emphysema can be reliably estimated using visual scoring on CT scans performed with x-ray equivalent doses on a PCD-CT. A deep learning algorithm demonstrated good agreement and strong correlation with the visual scoring method on low-dose scans. However, both the deep learning and LAV algorithms overestimated emphysema extent on x-ray dose scans. Nonetheless, x-ray equivalent radiation dose scans may revolutionize the detection and monitoring of disease in chronic obstructive pulmonary disease patients.
Collapse
Affiliation(s)
- Bjarne Kerber
- From the Institute for Diagnostic and Interventional Radiology, University Hospital Zurich, University Zurich, Zurich, Switzerland (B.K., F.E., J.K., T.F., L.J.); Advanced Radiology Center, Department of Diagnostic Imaging and Oncological Radiotherapy, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy (C.S., A.R.L.); and Section of Radiology, Department of Radiological and Hematological Sciences, Università Cattolica del Sacro Cuore, Rome, Italy (A.R.L.)
| | | | | | | | | | | | | |
Collapse
|
3
|
Golbus AE, Steveson C, Schuzer JL, Rollison SF, Worthy T, Jones AM, Julien-Williams P, Moss J, Chen MY. Ultra-low dose chest CT with silver filter and deep learning reconstruction significantly reduces radiation dose and retains quantitative information in the investigation and monitoring of lymphangioleiomyomatosis (LAM). Eur Radiol 2024; 34:5613-5620. [PMID: 38388717 PMCID: PMC11364713 DOI: 10.1007/s00330-024-10649-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/19/2023] [Accepted: 01/05/2024] [Indexed: 02/24/2024]
Abstract
PURPOSE Frequent CT scans to quantify lung involvement in cystic lung disease increases radiation exposure. Beam shaping energy filters can optimize imaging properties at lower radiation dosages. The aim of this study is to investigate whether use of SilverBeam filter and deep learning reconstruction algorithm allows for reduced radiation dose chest CT scanning in patients with lymphangioleiomyomatosis (LAM). MATERIAL AND METHODS In a single-center prospective study, 60 consecutive patients with LAM underwent chest CT at standard and ultra-low radiation doses. Standard dose scan was performed with standard copper filter and ultra-low dose scan was performed with SilverBeam filter. Scans were reconstructed using a soft tissue kernel with deep learning reconstruction (AiCE) technique and using a soft tissue kernel with hybrid iterative reconstruction (AIDR3D). Cyst scores were quantified by semi-automated software. Signal-to-noise ratio (SNR) was calculated for each reconstruction. Data were analyzed by linear correlation, paired t-test, and Bland-Altman plots. RESULTS Patients averaged 49.4 years and 100% were female with mean BMI 26.6 ± 6.1 kg/m2. Cyst score measured by AiCE reconstruction with SilverBeam filter correlated well with that of AIDR3D reconstruction with standard filter, with a 1.5% difference, and allowed for an 85.5% median radiation dosage reduction (0.33 mSv vs. 2.27 mSv, respectively, p < 0.001). Compared to standard filter with AIDR3D, SNR for SilverBeam AiCE images was slightly lower (3.2 vs. 3.1, respectively, p = 0.005). CONCLUSION SilverBeam filter with deep learning reconstruction reduces radiation dosage of chest CT, while maintaining accuracy of cyst quantification as well as image quality in cystic lung disease. CLINICAL RELEVANCE STATEMENT Radiation dosage from chest CT can be significantly reduced without sacrificing image quality by using silver filter in combination with a deep learning reconstructive algorithm. KEY POINTS • Deep learning reconstruction in chest CT had no significant effect on cyst quantification when compared to conventional hybrid iterative reconstruction. • SilverBeam filter reduced radiation dosage by 85.5% compared to standard dose chest CT. • SilverBeam filter in coordination with deep learning reconstruction maintained image quality and diagnostic accuracy for cyst quantification when compared to standard dose CT with hybrid iterative reconstruction.
Collapse
Affiliation(s)
- Alexa E Golbus
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, 10 Center Dr, MSC 1046, Building 10, Room B1D47, Bethesda, MD, 20892, USA
| | | | | | - Shirley F Rollison
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, USA
| | - Tat'Yana Worthy
- Office of the Clinical Director, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, USA
| | - Amanda M Jones
- Critical Care Medicine and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, USA
| | - Patricia Julien-Williams
- Critical Care Medicine and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, USA
| | - Joel Moss
- Critical Care Medicine and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, USA
| | - Marcus Y Chen
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, 10 Center Dr, MSC 1046, Building 10, Room B1D47, Bethesda, MD, 20892, USA.
| |
Collapse
|
4
|
Bae H, Lee JW, Jeong YJ, Hwang MH, Lee G. Increased Scan Speed and Pitch on Ultra-Low-Dose Chest CT: Effect on Nodule Volumetry and Image Quality. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1301. [PMID: 39202582 PMCID: PMC11356370 DOI: 10.3390/medicina60081301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024]
Abstract
Background and Objectives: This study's objective was to investigate the influence of increased scan speed and pitch on image quality and nodule volumetry in patients who underwent ultra-low-dose chest computed tomography (CT). Material and Methods: One hundred and two patients who had lung nodules were included in this study. Standard-speed, standard-pitch (SSSP) ultra-low-dose CT and high-speed, high-pitch (HSHP) ultra-low-dose CT were obtained for all patients. Image noise was measured as the standard deviation of attenuation. One hundred and sixty-three nodules were identified and classified according to location, volume, and nodule type. Volume measurement of detected pulmonary nodules was compared according to nodule location, volume, and nodule type. Motion artifacts at the right middle lobe, the lingular segment, and both lower lobes near the lung bases were evaluated. Subjective image quality analysis was also performed. Results: The HSHP CT scan demonstrated decreased motion artifacts at the left upper lobe lingular segment and left lower lobe compared to the SSSP CT scan (p < 0.001). The image noise was higher and the radiation dose was lower in the HSHP scan (p < 0.001). According to the nodule type, the absolute relative volume difference was significantly higher in ground glass opacity nodules compared with those of part-solid and solid nodules (p < 0.001). Conclusion: Our study results suggest that HSHP ultra-low-dose chest CT scans provide decreased motion artifacts and lower radiation doses compared to SSSP ultra-low-dose chest CT. However, lung nodule volumetry should be performed with caution for ground glass opacity nodules.
Collapse
Affiliation(s)
- Heejoo Bae
- Department of Radiology and Medical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan 49241, Republic of Korea (J.W.L.); (M.-H.H.)
| | - Ji Won Lee
- Department of Radiology and Medical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan 49241, Republic of Korea (J.W.L.); (M.-H.H.)
| | - Yeon Joo Jeong
- Department of Radiology and Medical Research Institute, Yangsan Pusan National University Hospital, Pusan National University School of Medicine, Busan 50612, Republic of Korea;
| | - Min-Hee Hwang
- Department of Radiology and Medical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan 49241, Republic of Korea (J.W.L.); (M.-H.H.)
| | - Geewon Lee
- Department of Radiology and Medical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan 49241, Republic of Korea (J.W.L.); (M.-H.H.)
| |
Collapse
|
5
|
Park H, Hwang EJ, Goo JM. Deep Learning-Based Kernel Adaptation Enhances Quantification of Emphysema on Low-Dose Chest CT for Predicting Long-Term Mortality. Invest Radiol 2024; 59:278-286. [PMID: 37428617 DOI: 10.1097/rli.0000000000001003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
OBJECTIVES The aim of this study was to ascertain the predictive value of quantifying emphysema using low-dose computed tomography (LDCT) post deep learning-based kernel adaptation on long-term mortality. MATERIALS AND METHODS This retrospective study investigated LDCTs obtained from asymptomatic individuals aged 60 years or older during health checkups between February 2009 and December 2016. These LDCTs were reconstructed using a 1- or 1.25-mm slice thickness alongside high-frequency kernels. A deep learning algorithm, capable of generating CT images that resemble standard-dose and low-frequency kernel images, was applied to these LDCTs. To quantify emphysema, the lung volume percentage with an attenuation value less than or equal to -950 Hounsfield units (LAA-950) was gauged before and after kernel adaptation. Low-dose chest CTs with LAA-950 exceeding 6% were deemed emphysema-positive according to the Fleischner Society statement. Survival data were sourced from the National Registry Database at the close of 2021. The risk of nonaccidental death, excluding causes such as injury or poisoning, was explored according to the emphysema quantification results using multivariate Cox proportional hazards models. RESULTS The study comprised 5178 participants (mean age ± SD, 66 ± 3 years; 3110 males). The median LAA-950 (18.2% vs 2.6%) and the proportion of LDCTs with LAA-950 exceeding 6% (96.3% vs 39.3%) saw a significant decline after kernel adaptation. There was no association between emphysema quantification before kernel adaptation and the risk of nonaccidental death. Nevertheless, after kernel adaptation, higher LAA-950 (hazards ratio for 1% increase, 1.01; P = 0.045) and LAA-950 exceeding 6% (hazards ratio, 1.36; P = 0.008) emerged as independent predictors of nonaccidental death, upon adjusting for age, sex, and smoking status. CONCLUSIONS The application of deep learning for kernel adaptation proves instrumental in quantifying pulmonary emphysema on LDCTs, establishing itself as a potential predictive tool for long-term nonaccidental mortality in asymptomatic individuals.
Collapse
Affiliation(s)
- Hyungin Park
- From the Department of Radiology, Seoul National University Hospital, Seoul, South Korea (H.P., E.J.H., J.M.G.); and Department of Radiology, Seoul National University College of Medicine, Seoul, South Korea (J.M.G.)
| | | | | |
Collapse
|
6
|
Urban T, Sauter AP, Frank M, Willer K, Noichl W, Bast H, Schick R, Herzen J, Koehler T, Gassert FT, Bodden JH, Fingerle AA, Gleich B, Renger B, Makowski MR, Pfeiffer F, Pfeiffer D. Dark-Field Chest Radiography Outperforms Conventional Chest Radiography for the Diagnosis and Staging of Pulmonary Emphysema. Invest Radiol 2023; 58:775-781. [PMID: 37276130 PMCID: PMC10581407 DOI: 10.1097/rli.0000000000000989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/28/2023] [Indexed: 06/07/2023]
Abstract
OBJECTIVES Dark-field chest radiography (dfCXR) has recently reached clinical trials. Here we compare dfCXR to conventional radiography for the detection and staging of pulmonary emphysema. MATERIALS AND METHODS Subjects were included after a medically indicated computed tomography (CT) scan, showing either no lung impairments or different stages of emphysema. To establish a ground truth, all CT scans were assessed by 3 radiologists assigning emphysema severity scores based on the Fleischner Society classification scheme.Participants were imaged at a commercial chest radiography device and at a prototype for dfCXR, yielding both attenuation-based and dark-field images. Three radiologists blinded to CT score independently assessed images from both devices for presence and severity of emphysema (no, mild, moderate, severe).Statistical analysis included evaluation of receiver operating characteristic curves and pairwise comparison of adjacent Fleischner groups using an area under the curve (AUC)-based z test with a significance level of 0.05. RESULTS A total of 88 participants (54 men) with a mean age of 64 ± 12 years were included. Compared with conventional images (AUC = 0.73), readers were better able to identify emphysema with images from the dark-field prototype (AUC = 0.85, P = 0.005). Although ratings of adjacent emphysema severity groups with conventional radiographs differed only for trace and mild emphysema, ratings based on images from the dark-field prototype were different for trace and mild, mild and moderate, and moderate and confluent emphysema. CONCLUSIONS Dark-field chest radiography is superior to conventional chest radiography for emphysema diagnosis and staging, indicating the technique's potential as a low-dose diagnostic tool for emphysema assessment.
Collapse
|
7
|
Grenier PA, Brun AL, Mellot F. The Potential Role of Artificial Intelligence in Lung Cancer Screening Using Low-Dose Computed Tomography. Diagnostics (Basel) 2022; 12:diagnostics12102435. [PMID: 36292124 PMCID: PMC9601207 DOI: 10.3390/diagnostics12102435] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
Two large randomized controlled trials of low-dose CT (LDCT)-based lung cancer screening (LCS) in high-risk smoker populations have shown a reduction in the number of lung cancer deaths in the screening group compared to a control group. Even if various countries are currently considering the implementation of LCS programs, recurring doubts and fears persist about the potentially high false positive rates, cost-effectiveness, and the availability of radiologists for scan interpretation. Artificial intelligence (AI) can potentially increase the efficiency of LCS. The objective of this article is to review the performances of AI algorithms developed for different tasks that make up the interpretation of LCS CT scans, and to estimate how these AI algorithms may be used as a second reader. Despite the reduction in lung cancer mortality due to LCS with LDCT, many smokers die of comorbid smoking-related diseases. The identification of CT features associated with these comorbidities could increase the value of screening with minimal impact on LCS programs. Because these smoking-related conditions are not systematically assessed in current LCS programs, AI can identify individuals with evidence of previously undiagnosed cardiovascular disease, emphysema or osteoporosis and offer an opportunity for treatment and prevention.
Collapse
Affiliation(s)
- Philippe A. Grenier
- Department of Clinical Research and Innovation, Hôpital Foch, 92150 Suresnes, France
- Correspondence:
| | | | | |
Collapse
|