1
|
Innamorati G, Sanchez-Petidier M, Bergafora G, Codazzi C, Palma V, Camera F, Merla C, André FM, Pedraza M, Moreno Manzano V, Caramazza L, Colella M, Marracino P, Balucani M, Apollonio F, Liberti M, Consales C. Characterization of Mesenchymal and Neural Stem Cells Response to Bipolar Microsecond Electric Pulses Stimulation. Int J Mol Sci 2024; 26:147. [PMID: 39796006 PMCID: PMC11720446 DOI: 10.3390/ijms26010147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/12/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
In the tissue regeneration field, stem cell transplantation represents a promising therapeutic strategy. To favor their implantation, proliferation and differentiation need to be controlled. Several studies have demonstrated that stem cell fate can be controlled by applying continuous electric field stimulation. This study aims to characterize the effect of a specific microsecond electric pulse stimulation (bipolar pulses of 100 µs + 100 µs, delivered for 30 min at an intensity of 250 V/cm) to induce an increase in cell proliferation on mesenchymal stem cells (MSCs) and induced neural stem cells (iNSCs). The effect was evaluated in terms of (i) cell counting, (ii) cell cycle, (iii) gene expression, and (iv) apoptosis. The results show that 24 h after the stimulation, cell proliferation, cell cycle, and apoptosis are not affected, but variation in the expression of specific genes involved in these processes is observed. These results led us to investigate cell proliferation until 72 h from the stimulation, observing an increase in the iNSCs number at this time point. The main outcome of this study is that the microsecond electric pulses can modulate stem cell proliferation.
Collapse
Affiliation(s)
- Giorgia Innamorati
- PhD Program in Cellular and Molecular Biology, Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Division of Biotechnologies, Italian National Agency for Energy, New Technologies and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (G.B.); (C.C.); (V.P.); (F.C.); (C.M.)
| | - Marina Sanchez-Petidier
- Neural Circuits and Behaviour Laboratory, Fundación Hospital Nacional de Parapléjicos, 45004 Toledo, Spain;
- Metabolic and Systemic Aspects of the Oncogenesis (METSY), CNRS, Institut Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France;
| | - Giulia Bergafora
- Division of Biotechnologies, Italian National Agency for Energy, New Technologies and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (G.B.); (C.C.); (V.P.); (F.C.); (C.M.)
| | - Camilla Codazzi
- Division of Biotechnologies, Italian National Agency for Energy, New Technologies and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (G.B.); (C.C.); (V.P.); (F.C.); (C.M.)
| | - Valentina Palma
- Division of Biotechnologies, Italian National Agency for Energy, New Technologies and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (G.B.); (C.C.); (V.P.); (F.C.); (C.M.)
| | - Francesca Camera
- Division of Biotechnologies, Italian National Agency for Energy, New Technologies and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (G.B.); (C.C.); (V.P.); (F.C.); (C.M.)
| | - Caterina Merla
- Division of Biotechnologies, Italian National Agency for Energy, New Technologies and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (G.B.); (C.C.); (V.P.); (F.C.); (C.M.)
| | - Franck M. André
- Metabolic and Systemic Aspects of the Oncogenesis (METSY), CNRS, Institut Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France;
| | - Maria Pedraza
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain; (M.P.); (V.M.M.)
| | - Victoria Moreno Manzano
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain; (M.P.); (V.M.M.)
| | - Laura Caramazza
- BioEMLab Group, DIET, Department of Information Engineering, Electronics and Telecommunications Sapienza, University of Rome, 00184 Rome, Italy; (L.C.); (M.C.); (F.A.); (M.L.)
| | - Micol Colella
- BioEMLab Group, DIET, Department of Information Engineering, Electronics and Telecommunications Sapienza, University of Rome, 00184 Rome, Italy; (L.C.); (M.C.); (F.A.); (M.L.)
| | | | | | - Francesca Apollonio
- BioEMLab Group, DIET, Department of Information Engineering, Electronics and Telecommunications Sapienza, University of Rome, 00184 Rome, Italy; (L.C.); (M.C.); (F.A.); (M.L.)
| | - Micaela Liberti
- BioEMLab Group, DIET, Department of Information Engineering, Electronics and Telecommunications Sapienza, University of Rome, 00184 Rome, Italy; (L.C.); (M.C.); (F.A.); (M.L.)
| | - Claudia Consales
- Division of Biotechnologies, Italian National Agency for Energy, New Technologies and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (G.B.); (C.C.); (V.P.); (F.C.); (C.M.)
| |
Collapse
|
2
|
Stone ML, Lee HH, Levine EM. Agarose hydrogel-mediated electroporation method for retinal tissue cultured at the air-liquid interface. iScience 2024; 27:111299. [PMID: 39628577 PMCID: PMC11612790 DOI: 10.1016/j.isci.2024.111299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/29/2024] [Accepted: 10/29/2024] [Indexed: 12/06/2024] Open
Abstract
It is advantageous to culture the ex vivo retina and other tissues at the air-liquid interface to allow for more efficient gas exchange. However, gene delivery to these cultures can be challenging. Electroporation is a fast and robust method of gene delivery, but typically requires submergence in liquid buffer for electrical current flow. We have developed a submergence-free electroporation technique that incorporates an agarose hydrogel disk between the positive electrode and retina. Inner retinal neurons and Müller glia are transfected with increased propensity toward Müller glia transfection after extended time in culture. We also observed an increase in BrdU incorporation in Müller glia following electrical stimulation, and variation in detection of transfected cells from expression vectors with different promoters. This method advances our ability to use ex vivo retinal tissue for genetic studies and should be adaptable for other tissues cultured at an air-liquid interface.
Collapse
Affiliation(s)
- Megan L. Stone
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville TN 37232, USA
| | - Hannah H. Lee
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville TN 37232, USA
| | - Edward M. Levine
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville TN 37232, USA
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville TN 37232, USA
| |
Collapse
|
3
|
Savelyev MS, Kuksin AV, Murashko DT, Otsupko EP, Kurilova UE, Selishchev SV, Gerasimenko AY. Conductive Biocomposite Made by Two-Photon Polymerization of Hydrogels Based on BSA and Carbon Nanotubes with Eosin-Y. Gels 2024; 10:711. [PMID: 39590067 PMCID: PMC11594106 DOI: 10.3390/gels10110711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 10/28/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Currently, tissue engineering technologies are promising for the restoration of damaged organs and tissues. For regeneration of electrically conductive tissues or neural interfaces, it is necessary to provide electrical conductivity for the transmission of electrophysiological signals. The developed biocomposite structures presented in this article possess such properties. Their composition includes bovine serum albumin (BSA), gelatin, eosin-Y and single-walled carbon nanotubes (SWCNTs). For the first time, a biocomposite structure was formed from the proposed hydrogel using a nanosecond laser, and a two-photon absorption cross section value of 580 GM was achieved. Increased viscosity over 3 mPa∙s and self-focusing with a nonlinear refractive index of 42 × 10-12 cm2/W make it possible to create a biocomposite structure over the entire specified area. The obtained electrical conductivity value was 19 mS∙cm-1, due to the formation of effective electrically conductive networks. For a biocomposite with a concentration of gelatin 3 wt. %, formed by low-energy near-IR pulses, the survival of Neuro 2A nerve tissue cells was confirmed. The obtained results are important for the creation of new tissue engineering structures and neural interfaces from a biopolymer hydrogel based on the organic dye eosin-Y and carbon nanotubes by two-photon polymerization.
Collapse
Affiliation(s)
- Mikhail S. Savelyev
- Institute of Biomedical Systems, National Research University of Electronic Technology, 124498 Zelenograd, Russia; (A.V.K.); (D.T.M.); (E.P.O.); (U.E.K.); (S.V.S.); (A.Y.G.)
- Institute for Bionic Technologies and Engineering, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Artem V. Kuksin
- Institute of Biomedical Systems, National Research University of Electronic Technology, 124498 Zelenograd, Russia; (A.V.K.); (D.T.M.); (E.P.O.); (U.E.K.); (S.V.S.); (A.Y.G.)
| | - Denis T. Murashko
- Institute of Biomedical Systems, National Research University of Electronic Technology, 124498 Zelenograd, Russia; (A.V.K.); (D.T.M.); (E.P.O.); (U.E.K.); (S.V.S.); (A.Y.G.)
| | - Ekaterina P. Otsupko
- Institute of Biomedical Systems, National Research University of Electronic Technology, 124498 Zelenograd, Russia; (A.V.K.); (D.T.M.); (E.P.O.); (U.E.K.); (S.V.S.); (A.Y.G.)
| | - Ulyana E. Kurilova
- Institute of Biomedical Systems, National Research University of Electronic Technology, 124498 Zelenograd, Russia; (A.V.K.); (D.T.M.); (E.P.O.); (U.E.K.); (S.V.S.); (A.Y.G.)
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Sergey V. Selishchev
- Institute of Biomedical Systems, National Research University of Electronic Technology, 124498 Zelenograd, Russia; (A.V.K.); (D.T.M.); (E.P.O.); (U.E.K.); (S.V.S.); (A.Y.G.)
| | - Alexander Yu. Gerasimenko
- Institute of Biomedical Systems, National Research University of Electronic Technology, 124498 Zelenograd, Russia; (A.V.K.); (D.T.M.); (E.P.O.); (U.E.K.); (S.V.S.); (A.Y.G.)
- Institute for Bionic Technologies and Engineering, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
4
|
Toledano-Macías E, Martínez-Pascual MA, Cecilia-Matilla A, Bermejo-Martínez M, Pérez-González A, Jara RC, Sacristán S, Hernández-Bule ML. Radiofrequency Currents Modulate Inflammatory Processes in Keratinocytes. Int J Mol Sci 2024; 25:10663. [PMID: 39408993 PMCID: PMC11476504 DOI: 10.3390/ijms251910663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Keratinocytes play an essential role in the inflammatory phase of wound regeneration. In addition to migrating and proliferating for tissue regeneration, they produce a large amount of cytokines that modulate the inflammatory process. Previous studies have shown that subthermal treatment with radiofrequency (RF) currents used in capacitive resistive electric transfer (CRET) therapy promotes the proliferation of HaCat keratinocytes and modulates their cytokine production. Although physical therapies have been shown to have anti-inflammatory effects in a variety of experimental models and in patients, knowledge of the biological basis of these effects is still limited. The aim of this study was to investigate the effect of CRET on keratinocyte proliferation, cytokine production (IL-8, MCP-1, RANTES, IL-6, IL-11), TNF-α secretion, and the expression of MMP9, MMP1, NF-κB, ERK1/2, and EGFR. Human keratinocytes (HaCat) were treated with an intermittent 448 kHz electric current (CRET signal) in subthermal conditions and for different periods of time. Cell proliferation was analyzed by XTT assay, cytokine and TNF-α production by ELISA, NF-κB expression and activation by immunofluorescence, and MMP9, MMP1, ERK1/2, and EGF receptor expression and activation by immunoblot. Compared to a control, CRET increases keratinocyte proliferation, increases the transient release of MCP-1, TNF-α, and IL-6 while decreasing IL-8. In addition, it modifies the expression of MMPs and activates EGFR, NF-κB, and ERK1/2 proteins. Our results indicate that CRET reasonably modifies cytokine production through the EGF receptor and the ERK1/2/NF-κB pathway, ultimately modulating the inflammatory response of human keratinocytes.
Collapse
Affiliation(s)
- Elena Toledano-Macías
- Photobiology and Bioelectromagnetic Lab, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Ramón y Cajal, Crta. Colmenar Viejo, km. 9.100, 28034 Madrid, Spain; (E.T.-M.); (M.A.M.-P.); (R.C.J.)
| | - María Antonia Martínez-Pascual
- Photobiology and Bioelectromagnetic Lab, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Ramón y Cajal, Crta. Colmenar Viejo, km. 9.100, 28034 Madrid, Spain; (E.T.-M.); (M.A.M.-P.); (R.C.J.)
| | - Almudena Cecilia-Matilla
- Angiology and Vascular Surgery Service, Hospital Ramón y Cajal, Crta. Colmenar Viejo, km. 9.100, 28034 Madrid, Spain; (A.C.-M.); (M.B.-M.)
| | - Mariano Bermejo-Martínez
- Angiology and Vascular Surgery Service, Hospital Ramón y Cajal, Crta. Colmenar Viejo, km. 9.100, 28034 Madrid, Spain; (A.C.-M.); (M.B.-M.)
| | - Alfonso Pérez-González
- Dermatology Service, Hospital Ramón y Cajal, Crta. Colmenar Viejo, km. 9.100, 28034 Madrid, Spain;
| | - Rosa Cristina Jara
- Photobiology and Bioelectromagnetic Lab, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Ramón y Cajal, Crta. Colmenar Viejo, km. 9.100, 28034 Madrid, Spain; (E.T.-M.); (M.A.M.-P.); (R.C.J.)
| | - Silvia Sacristán
- Aptamer Group, Histology Lab, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Ramón y Cajal, Crta. Colmenar Viejo, km. 9.100, 28034 Madrid, Spain;
| | - María Luisa Hernández-Bule
- Photobiology and Bioelectromagnetic Lab, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Ramón y Cajal, Crta. Colmenar Viejo, km. 9.100, 28034 Madrid, Spain; (E.T.-M.); (M.A.M.-P.); (R.C.J.)
| |
Collapse
|
5
|
Di Pietro B, Villata S, Dal Monego S, Degasperi M, Ghini V, Guarnieri T, Plaksienko A, Liu Y, Pecchioli V, Manni L, Tenori L, Licastro D, Angelini C, Napione L, Frascella F, Nardini C. Differential Anti-Inflammatory Effects of Electrostimulation in a Standardized Setting. Int J Mol Sci 2024; 25:9808. [PMID: 39337300 PMCID: PMC11432240 DOI: 10.3390/ijms25189808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
The therapeutic usage of physical stimuli is framed in a highly heterogeneous research area, with variable levels of maturity and of translatability into clinical application. In particular, electrostimulation is deeply studied for its application on the autonomous nervous system, but less is known about the anti- inflammatory effects of such stimuli beyond the inflammatory reflex. Further, reproducibility and meta-analyses are extremely challenging, owing to the limited rationale on dosage and experimental standardization. It is specifically to address the fundamental question on the anti-inflammatory effects of electricity on biological systems, that we propose a series of controlled experiments on the effects of direct and alternate current delivered on a standardized 3D bioconstruct constituted by fibroblasts and keratinocytes in a collagen matrix, in the presence or absence of TNF-α as conventional inflammation inducer. This selected but systematic exploration, with transcriptomics backed by metabolomics at specific time points allows to obtain the first systemic overview of the biological functions at stake, highlighting the differential anti-inflammatory potential of such approaches, with promising results for 5 V direct current stimuli, correlating with the wound healing process. With our results, we wish to set the base for a rigorous systematic approach to the problem, fundamental towards future elucidations of the detailed mechanisms at stake, highlighting both the healing and damaging potential of such approaches.
Collapse
Affiliation(s)
- Biagio Di Pietro
- Consiglio Nazionale delle Ricerche, Istituto per le Applicazioni del Calcolo “Mauro Picone”, 00185 Roma, Italy; (B.D.P.); (T.G.); (A.P.); (Y.L.); (C.A.)
| | - Simona Villata
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, 10129 Turin, Italy; (S.V.); (F.F.)
- PolitoBIOMed Lab, Politecnico di Torino, 10129 Turin, Italy
| | - Simeone Dal Monego
- Area Science Park, Basovizza, 34149 Trieste, Italy; (S.D.M.); (M.D.); (D.L.)
| | | | - Veronica Ghini
- Department of Chemistry “Ugo Schiff” and Magnetic Resonance Center (CERM), University of Florence, 50019 Sesto Fiorentino, Italy; (V.G.); (L.T.)
| | - Tiziana Guarnieri
- Consiglio Nazionale delle Ricerche, Istituto per le Applicazioni del Calcolo “Mauro Picone”, 00185 Roma, Italy; (B.D.P.); (T.G.); (A.P.); (Y.L.); (C.A.)
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BIGEA), University of Bologna, 40100 Bologna, Italy
| | - Anna Plaksienko
- Consiglio Nazionale delle Ricerche, Istituto per le Applicazioni del Calcolo “Mauro Picone”, 00185 Roma, Italy; (B.D.P.); (T.G.); (A.P.); (Y.L.); (C.A.)
- Oslo Center of Biostatistics and Epidemiology, University of Oslo, 0317 Oslo, Norway
| | - Yuanhua Liu
- Consiglio Nazionale delle Ricerche, Istituto per le Applicazioni del Calcolo “Mauro Picone”, 00185 Roma, Italy; (B.D.P.); (T.G.); (A.P.); (Y.L.); (C.A.)
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Valentina Pecchioli
- Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), 50019 Sesto Fiorentino, Italy;
| | - Luigi Manni
- Consiglio Nazionale delle Ricerche, Istituto di Farmacologia Traslazionale, 00185 Roma, Italy;
| | - Leonardo Tenori
- Department of Chemistry “Ugo Schiff” and Magnetic Resonance Center (CERM), University of Florence, 50019 Sesto Fiorentino, Italy; (V.G.); (L.T.)
- Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), 50019 Sesto Fiorentino, Italy;
| | - Danilo Licastro
- Area Science Park, Basovizza, 34149 Trieste, Italy; (S.D.M.); (M.D.); (D.L.)
| | - Claudia Angelini
- Consiglio Nazionale delle Ricerche, Istituto per le Applicazioni del Calcolo “Mauro Picone”, 00185 Roma, Italy; (B.D.P.); (T.G.); (A.P.); (Y.L.); (C.A.)
| | - Lucia Napione
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, 10129 Turin, Italy; (S.V.); (F.F.)
- PolitoBIOMed Lab, Politecnico di Torino, 10129 Turin, Italy
| | - Francesca Frascella
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, 10129 Turin, Italy; (S.V.); (F.F.)
- PolitoBIOMed Lab, Politecnico di Torino, 10129 Turin, Italy
| | - Christine Nardini
- Consiglio Nazionale delle Ricerche, Istituto per le Applicazioni del Calcolo “Mauro Picone”, 00185 Roma, Italy; (B.D.P.); (T.G.); (A.P.); (Y.L.); (C.A.)
| |
Collapse
|
6
|
Krutko M, Poling HM, Bryan AE, Sharma M, Singh A, Reza HA, Wikenheiser-Brokamp KA, Takebe T, Helmrath MA, Harris GM, Esfandiari L. Enhanced Piezoelectric Performance of PVDF-TrFE Nanofibers through Annealing for Tissue Engineering Applications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.16.608345. [PMID: 39229142 PMCID: PMC11370437 DOI: 10.1101/2024.08.16.608345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
This study investigates bioelectric stimulation's role in tissue regeneration by enhancing the piezoelectric properties of tissue-engineered grafts using annealed poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE) scaffolds. Annealing at temperatures of 80°C, 100°C, 120°C, and 140°C was assessed for its impact on material properties and physiological utility. Analytical techniques such as Differential Scanning Calorimetry (DSC), Fourier-Transform Infrared Spectroscopy (FTIR), and X-ray Diffraction (XRD) revealed increased crystallinity with higher annealing temperatures, peaking in β-phase content and crystallinity at 140°C. Scanning Electron Microscopy (SEM) showed that 140°C annealed scaffolds had enhanced lamellar structures, increased porosity, and maximum piezoelectric response. Mechanical tests indicated that 140°C annealing improved elastic modulus, tensile strength, and substrate stiffness, aligning these properties with physiological soft tissues. In vitro assessments in Schwann cells demonstrated favorable responses, with increased cell proliferation, contraction, and extracellular matrix attachment. Additionally, genes linked to extracellular matrix production, vascularization, and calcium signaling were upregulated. The foreign body response in C57BL/6 mice, evaluated through Hematoxylin and Eosin (H&E) and Picrosirius Red staining, showed no differences between scaffold groups, supporting the potential for future functional evaluation of the annealed group in tissue repair.
Collapse
|
7
|
Kaveti R, Jakus MA, Chen H, Jain B, Kennedy DG, Caso EA, Mishra N, Sharma N, Uzunoğlu BE, Han WB, Jang TM, Hwang SW, Theocharidis G, Sumpio BJ, Veves A, Sia SK, Bandodkar AJ. Water-powered, electronics-free dressings that electrically stimulate wounds for rapid wound closure. SCIENCE ADVANCES 2024; 10:eado7538. [PMID: 39110791 PMCID: PMC11305378 DOI: 10.1126/sciadv.ado7538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/28/2024] [Indexed: 08/10/2024]
Abstract
Chronic wounds affect ~2% of the U.S. population and increase risks of amputation and mortality. Unfortunately, treatments for such wounds are often expensive, complex, and only moderately effective. Electrotherapy represents a cost-effective treatment; however, its reliance on bulky equipment limits its clinical use. Here, we introduce water-powered, electronics-free dressings (WPEDs) that offer a unique solution to this issue. The WPED performs even under harsh conditions-situations wherein many present treatments fail. It uses a flexible, biocompatible magnesium-silver/silver chloride battery and a pair of stimulation electrodes; upon the addition of water, the battery creates a radial electric field. Experiments in diabetic mice confirm the WPED's ability to accelerate wound closure and promote healing by increasing epidermal thickness, modulating inflammation, and promoting angiogenesis. Across preclinical wound models, the WPED-treated group heals faster than the control with wound closure rates comparable to treatments requiring expensive biologics and/or complex electronics. The results demonstrate the WPED's potential as an effective and more practical wound treatment dressing.
Collapse
Affiliation(s)
- Rajaram Kaveti
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC 27606, USA
| | - Margaret A. Jakus
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Henry Chen
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC 27606, USA
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC 27606, USA
| | - Bhavya Jain
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC 27606, USA
| | - Darragh G. Kennedy
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Elizabeth A. Caso
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Navya Mishra
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC 27606, USA
| | - Nivesh Sharma
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC 27606, USA
| | - Baha Erim Uzunoğlu
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC 27606, USA
| | - Won Bae Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Tae-Min Jang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Suk-Won Hwang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Department of Integrative Energy Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Georgios Theocharidis
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Brandon J. Sumpio
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Aristidis Veves
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Samuel K. Sia
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Amay J. Bandodkar
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC 27606, USA
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC 27606, USA
| |
Collapse
|
8
|
Bianconi S, Leppik L, Oppermann E, Marzi I, Henrich D. Direct Current Electrical Stimulation Shifts THP-1-Derived Macrophage Polarization towards Pro-Regenerative M2 Phenotype. Int J Mol Sci 2024; 25:7272. [PMID: 39000377 PMCID: PMC11242703 DOI: 10.3390/ijms25137272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/14/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
A macrophage shift from the M1 to the M2 phenotype is relevant for promoting tissue repair and regeneration. In a previous in vivo study, we found that direct current (DC) electrical stimulation (EStim) increased the proportion of M2 macrophages in healing tissues and directed the balance of the injury response away from healing/scarring towards regeneration. These observations led us to hypothesize that DC EStim regulates macrophage polarization towards an M2 phenotype. THP-1-derived M0, M1 (IFN-γ and LPS), and M2 (IL-4 and IL-13) macrophages were exposed (or not: control group) to 100 mV/mm of DC EStim, 1 h/day for three days. Macrophage polarization was assessed through gene and surface marker expressions and cytokine secretion profiles. Following DC EStim treatment, M0 cells exhibited an upregulation of M2 marker genes IL10, CD163, and PPARG. In M1 cells, DC EStim upregulated the gene expressions of M2 markers IL10, TGM2, and CD206 and downregulated M1 marker gene CD86. EStim treatment also reduced the surface expression of CD86 and secretion of pro-inflammatory cytokines IL-1β and IL-6. Our results suggest that DC EStim differentially exerts pro-M2 effects depending on the macrophage phenotype: it upregulates typical M2 genes in M0 and M1 cells while inhibiting M1 marker CD86 at the nuclear and protein levels and the secretion of pro-inflammatory interleukins in M1 cells. Conversely, M2 cells appear to be less responsive to the EStim treatment employed in this study.
Collapse
Affiliation(s)
- Santiago Bianconi
- Department of Trauma Surgery and Orthopedics, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Liudmila Leppik
- Department of Trauma Surgery and Orthopedics, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Elsie Oppermann
- Department of General, Visceral, Transplant and Thoracic Surgery, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Ingo Marzi
- Department of Trauma Surgery and Orthopedics, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Dirk Henrich
- Department of Trauma Surgery and Orthopedics, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| |
Collapse
|
9
|
Jaramillo V, Arévalo DF, González-Hernández M, Cortés MT, Perdomo-Arciniegas AM, Cruz JC, Muñoz-Camargo C. Conductive extracellular matrix derived/chitosan methacrylate/ graphene oxide-pegylated hybrid hydrogel for cell expansion. Front Bioeng Biotechnol 2024; 12:1398052. [PMID: 38952668 PMCID: PMC11215370 DOI: 10.3389/fbioe.2024.1398052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/08/2024] [Indexed: 07/03/2024] Open
Abstract
Electrical stimulation has emerged as a cornerstone technique in the rapidly evolving field of biomedical engineering, particularly within the realms of tissue engineering and regenerative medicine. It facilitates cell growth, proliferation, and differentiation, thereby advancing the development of accurate tissue models and enhancing drug-testing methodologies. Conductive hydrogels, which enable the conduction of microcurrents in 3D in vitro cultures, are central to this advancement. The integration of high-electroconductive nanomaterials, such as graphene oxide (GO), into hydrogels has revolutionized their mechanical and conductivity properties. Here, we introduce a novel electrostimulation assay utilizing a hybrid hydrogel composed of methacryloyl-modified small intestine submucosa (SIS) dECM (SISMA), chitosan methacrylate (ChiMA), and GO-polyethylene glycol (GO-PEG) in a 3D in vitro culture within a hypoxic environment of umbilical cord blood cells (UCBCs). Results not only demonstrate significant cell proliferation within 3D constructs exposed to microcurrents and early growth factors but also highlight the hybrid hydrogel's physiochemical prowess through comprehensive rheological, morphological, and conductivity analyses. Further experiments will focus on identifying the regulatory pathways of cells subjected to electrical stimulation.
Collapse
Affiliation(s)
- Valentina Jaramillo
- Grupo de investigación en Nanobiomateriales, Ingeniería Celular y Bioimpresión (GINIB), Departamento de Ingeniería Biomédica, Universidad de los Andes, Bogotá, Colombia
| | - Daniel Felipe Arévalo
- Grupo de investigación en Nanobiomateriales, Ingeniería Celular y Bioimpresión (GINIB), Departamento de Ingeniería Biomédica, Universidad de los Andes, Bogotá, Colombia
| | | | - María T. Cortés
- Department of Chemistry, Universidad de los Andes, Bogotá, Colombia
| | - Ana María Perdomo-Arciniegas
- Cord Blood Bank (CBB) Research Group, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud (IDCBIS), Bogotá, Colombia
| | - Juan C. Cruz
- Grupo de investigación en Nanobiomateriales, Ingeniería Celular y Bioimpresión (GINIB), Departamento de Ingeniería Biomédica, Universidad de los Andes, Bogotá, Colombia
| | - Carolina Muñoz-Camargo
- Grupo de investigación en Nanobiomateriales, Ingeniería Celular y Bioimpresión (GINIB), Departamento de Ingeniería Biomédica, Universidad de los Andes, Bogotá, Colombia
| |
Collapse
|
10
|
Nascimento ATD, Mendes AX, Duchi S, Duc D, Aguilar LC, Quigley AF, Kapsa RMI, Nisbet DR, Stoddart PR, Silva SM, Moulton SE. Wired for Success: Probing the Effect of Tissue-Engineered Neural Interface Substrates on Cell Viability. ACS Biomater Sci Eng 2024; 10:3775-3791. [PMID: 38722625 DOI: 10.1021/acsbiomaterials.4c00111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
This study investigates the electrochemical behavior of GelMA-based hydrogels and their interactions with PC12 neural cells under electrical stimulation in the presence of conducting substrates. Focusing on indium tin oxide (ITO), platinum, and gold mylar substrates supporting conductive scaffolds composed of hydrogel, graphene oxide, and gold nanorods, we explored how the substrate materials affect scaffold conductivity and cell viability. We examined the impact of an optimized electrical stimulation protocol on the PC12 cell viability. According to our findings, substrate selection significantly influences conductive hydrogel behavior, affecting cell viability and proliferation as a result. In particular, the ITO substrates were found to provide the best support for cell viability with an average of at least three times higher metabolic activity compared to platinum and gold mylar substrates over a 7 day stimulation period. The study offers new insights into substrate selection as a platform for neural cell stimulation and underscores the critical role of substrate materials in optimizing the efficacy of neural interfaces for biomedical applications. In addition to extending existing work, this study provides a robust platform for future explorations aimed at tailoring the full potential of tissue-engineered neural interfaces.
Collapse
Affiliation(s)
- Adriana Teixeira do Nascimento
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
| | - Alexandre X Mendes
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
| | - Serena Duchi
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
- Department of Surgery, University of Melbourne, St Vincent's Hospital, Melbourne, Victoria 3065, Australia
| | - Daniela Duc
- School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF10 3NB, United Kingdom
| | - Lilith C Aguilar
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
- The Graeme Clark Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Anita F Quigley
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
- School of Electrical and Biomedical Engineering, RMIT University, Melbourne, Victoria 3001, Australia
- Department of Medicine, University of Melbourne, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
| | - Robert M I Kapsa
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
- School of Electrical and Biomedical Engineering, RMIT University, Melbourne, Victoria 3001, Australia
- Department of Medicine, University of Melbourne, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
| | - David R Nisbet
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
- The Graeme Clark Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Victoria 3010, Australia
- Melbourne Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Paul R Stoddart
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Saimon M Silva
- Department of Chemistry and Biochemistry, La Trobe Institute for Molecular Science, The Biomedical and Environmental Sensor Technology Research Centre, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Simon E Moulton
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
- Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
| |
Collapse
|
11
|
Alahmadi A, Abdelsamad Y, Yousef M, Almuhawas F, Hafez A, Alzhrani F, Hagr A. Cochlear Implantation: Long-Term Effect of Early Activation on Electrode Impedance. J Clin Med 2024; 13:3299. [PMID: 38893010 PMCID: PMC11172931 DOI: 10.3390/jcm13113299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Objectives: The growing adoption of cochlear implants (CIs) necessitates understanding the factors influencing long-term performance and improved outcomes. This work investigated the long-term effect of early activation of CIs on electrode impedance in a large sample of CI users at different time points. Methods: A retrospective study on 915 ears from CI patients who were implanted between 2015 and 2020. According to their CI audio processor activation time, the patients were categorized into early activation (activated 1 day after surgery, n = 481) and classical activation (activated 4 weeks after surgery, n = 434) groups. Then, the impact of the activation times on the electrode impedance values, along the electrode array contacts, at different time points up to two years was studied and analyzed. Results: The early activation group demonstrated lower impedance values across all the electrode array sections compared to the classical activation at 1 month, 1 year, and 2 years post-implantation. At 1 month, early activation was associated with a reduction of 0.34 kΩ, 0.46 kΩ, and 0.37 kΩ in the apical, middle, and basal sections, respectively. These differences persisted at subsequent intervals. Conclusions: Early activation leads to sustained reductions in the electrode impedance compared to classical activation (CA), suggesting that earlier activation might positively affect long-term CI outcomes.
Collapse
Affiliation(s)
- Asma Alahmadi
- King Abdullah Ear Specialist Center (KAESC), King Saud Medical City, King Saud University, Riyadh 11411, Saudi Arabia; (M.Y.); (F.A.); (F.A.); (A.H.)
| | - Yassin Abdelsamad
- Research Department, MED-EL GmbH, Riyadh 11563, Saudi Arabia; (Y.A.); (A.H.)
| | - Medhat Yousef
- King Abdullah Ear Specialist Center (KAESC), King Saud Medical City, King Saud University, Riyadh 11411, Saudi Arabia; (M.Y.); (F.A.); (F.A.); (A.H.)
- Audio Vestibular Unit, ENT Department, Menoufia University, Menoufia 32928, Egypt
| | - Fida Almuhawas
- King Abdullah Ear Specialist Center (KAESC), King Saud Medical City, King Saud University, Riyadh 11411, Saudi Arabia; (M.Y.); (F.A.); (F.A.); (A.H.)
| | - Ahmed Hafez
- Research Department, MED-EL GmbH, Riyadh 11563, Saudi Arabia; (Y.A.); (A.H.)
| | - Farid Alzhrani
- King Abdullah Ear Specialist Center (KAESC), King Saud Medical City, King Saud University, Riyadh 11411, Saudi Arabia; (M.Y.); (F.A.); (F.A.); (A.H.)
| | - Abdulrahman Hagr
- King Abdullah Ear Specialist Center (KAESC), King Saud Medical City, King Saud University, Riyadh 11411, Saudi Arabia; (M.Y.); (F.A.); (F.A.); (A.H.)
| |
Collapse
|
12
|
Stone ML, Lee HH, Levine E. Agarose disk electroporation method for ex vivo retinal tissue cultured at the air-liquid interface reveals electrical stimulus-induced cell cycle reentry in retinal cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.21.572865. [PMID: 38187784 PMCID: PMC10769434 DOI: 10.1101/2023.12.21.572865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
It is advantageous to culture the ex vivo murine retina along with many other tissue types at the air-liquid interface. However, gene delivery to these cultures can be challenging. Electroporation is a fast and robust method of gene delivery, but typically requires submergence in a liquid buffer to allow electric current flow. We have developed a submergence-free electroporation technique using an agarose disk that allows for efficient gene delivery to the ex vivo murine retina. This method advances our ability to use ex vivo retinal tissue for genetic studies and can easily be adapted for any tissue cultured at an air-liquid interface. We found an increased ability to transfected Muller glia at 14 days ex vivo and an increase in BrdU incorporation in Muller glia following electrical stimulation. Use of this method has revealed valuable insights on the state of ex vivo retinal tissues and the effects of electrical stimulation on retinal cells.
Collapse
|
13
|
Lee KK, Celt N, Ardoña HAM. Looking both ways: Electroactive biomaterials with bidirectional implications for dynamic cell-material crosstalk. BIOPHYSICS REVIEWS 2024; 5:021303. [PMID: 38736681 PMCID: PMC11087870 DOI: 10.1063/5.0181222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 04/15/2024] [Indexed: 05/14/2024]
Abstract
Cells exist in natural, dynamic microenvironmental niches that facilitate biological responses to external physicochemical cues such as mechanical and electrical stimuli. For excitable cells, exogenous electrical cues are of interest due to their ability to stimulate or regulate cellular behavior via cascade signaling involving ion channels, gap junctions, and integrin receptors across the membrane. In recent years, conductive biomaterials have been demonstrated to influence or record these electrosensitive biological processes whereby the primary design criterion is to achieve seamless cell-material integration. As such, currently available bioelectronic materials are predominantly engineered toward achieving high-performing devices while maintaining the ability to recapitulate the local excitable cell/tissue microenvironment. However, such reports rarely address the dynamic signal coupling or exchange that occurs at the biotic-abiotic interface, as well as the distinction between the ionic transport involved in natural biological process and the electronic (or mixed ionic/electronic) conduction commonly responsible for bioelectronic systems. In this review, we highlight current literature reports that offer platforms capable of bidirectional signal exchange at the biotic-abiotic interface with excitable cell types, along with the design criteria for such biomaterials. Furthermore, insights on current materials not yet explored for biointerfacing or bioelectronics that have potential for bidirectional applications are also provided. Finally, we offer perspectives aimed at bringing attention to the coupling of the signals delivered by synthetic material to natural biological conduction mechanisms, areas of improvement regarding characterizing biotic-abiotic crosstalk, as well as the dynamic nature of this exchange, to be taken into consideration for material/device design consideration for next-generation bioelectronic systems.
Collapse
Affiliation(s)
- Kathryn Kwangja Lee
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, California 92697, USA
| | - Natalie Celt
- Department of Biomedical Engineering, University of California, Irvine, California 92697, USA
| | | |
Collapse
|
14
|
Nazari-Vanani R, Vafaiee M, Zamanpour F, Asadian E, Mohammadpour R, Rafii-Tabar H, Sasanpour P. Flexible Triboelectric Nanogenerator for Promoting the Proliferation and Migration of Human Fibroblast Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15773-15782. [PMID: 38526295 DOI: 10.1021/acsami.3c17915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Chronic wound healing is often a prolonged process with the migration and proliferation of fibroblast cells playing crucial roles. Electrical stimulation (ES) has emerged as a promising physical therapy modality to promote these key events. In this study, we address this issue by employing a triboelectric nanogenerator (TENG) as an electrical stimulator for both drug release and the stimulation of fibroblast cells. The flexible TENG with a sandwich structure was fabricated using a PCL nanofibrous layer, Kapton, and silicon rubber. The TENG could be folded to any degree and twisted, and it could return to its original shape when the force was removed. Cultured cells received ES twice and three times daily for 8 days, with a 30 min interval between sessions. By applying current in a safe range and appropriate time (twice daily), fibroblasts demonstrate an accelerated proliferation and migration rate. These observations were confirmed through cell staining. Additionally, in vitro tests demonstrated the TENG's ability to simultaneously provide ES and release vitamin C from the patch. After 2 h, the amount of released drug increased 2 times in comparison to the control group. These findings provide support for the development of a TENG for the treatment of wounds, which underlines the promise of this new technique for developing portable electric stimulation devices.
Collapse
Affiliation(s)
- Razieh Nazari-Vanani
- Center for Nanoscience and Nanotechnology, Institute for Convergence Science & Technology, Sharif University of Technology, Tehran, Iran
| | - Mohaddeseh Vafaiee
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Fahimeh Zamanpour
- Center for Nanoscience and Nanotechnology, Institute for Convergence Science & Technology, Sharif University of Technology, Tehran, Iran
| | - Elham Asadian
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Raheleh Mohammadpour
- Center for Nanoscience and Nanotechnology, Institute for Convergence Science & Technology, Sharif University of Technology, Tehran, Iran
| | - Hashem Rafii-Tabar
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- The Physics Branch of Iran Academy of Sciences, Tehran, Iran
| | - Pezhman Sasanpour
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- School of Nanoscience, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran, Iran
| |
Collapse
|
15
|
Roy Barman S, Jhunjhunwala S. Electrical Stimulation for Immunomodulation. ACS OMEGA 2024; 9:52-66. [PMID: 38222551 PMCID: PMC10785302 DOI: 10.1021/acsomega.3c06696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 01/16/2024]
Abstract
The immune system plays a key role in the development and progression of numerous diseases such as chronic wounds, autoimmune diseases, and various forms of cancer. Hence, controlling the behavior of immune cells has emerged as a promising approach for treating these diseases. Current modalities for immunomodulation focus on chemical based approaches, which while effective have the limitations of nonspecific systemic side effects or requiring invasive delivery approaches to reduce the systemic side effects. Recent advances have unraveled the significance of electrical stimulation as an attractive noninvasive approach to modulate immune cell phenotype and activity. This review provides insights on electrical stimulation strategies employed for regulating the behavior of macrophages, T and B cells, and neutrophils. For obtaining a better understanding, two major types of electrical stimulation sources, conventional and self-powered sources, that have been used for immunomodulation are extensively discussed. Next, the strategies of electrical stimulation that may be applied to cells in vitro and in vivo are discussed, with a focus on conventional and stimuli-responsive self-powered sources. A description of how these strategies influence the polarization, phagocytosis, migration, and differentiation of immune cells is also provided. Finally, recent developments in the use of highly localized and efficient platforms for electrical stimulation based immunomodulation are also highlighted.
Collapse
Affiliation(s)
- Snigdha Roy Barman
- Department of Bioengineering, Indian Institute of Science, Bengaluru, India 560012
| | | |
Collapse
|
16
|
Huseynov AN, Malanchuk VA, Myroshnychenko MS, Kapustnyk NV, Sukharieva LP, Selivanova LI. Special at-rich sequence-binding protein 2 and its role in healing of the experimental mandible bone tissue defect filling with a synthetic bone graft material and electrical stimulation impact. POLSKI MERKURIUSZ LEKARSKI : ORGAN POLSKIEGO TOWARZYSTWA LEKARSKIEGO 2024; 52:385-391. [PMID: 39360717 DOI: 10.36740/merkur202404101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
OBJECTIVE Aim: The purpose of the study was to identify the role of SATB2 in healing of the experimental mandible bone tissue defect filling with a synthetic bone graft material and electrical stimulation impact. PATIENTS AND METHODS Materials and Methods: An experiment was carried out on 48 mature male rats of the WAG population, which were divided into 4 groups. Each group included 12 experimental animals. Group 1 included rats that were modeled with a perforated defect of the lower jaw body. Group 2 included animals that were modeled with a perforated defect similar to group 1. In animals, a microdevice for electrical action was implanted subcutaneously in the neck area on the side of the simulated bone defect. The negative electrode connected to the negative pole of the battery was in contact with the bone defect. The battery and electrode were insulated with plastic heat shrink material. Group 3 included rats that were modeled with a perforated defect similar to previous groups, the cavity of which was filled with synthetic bone graft "Biomin GT" (RAPID, Ukraine). Group 4 included animals that were modeled with a perforated defect similar to groups 1-3, the cavity of which was filled with synthetic bone graft "Biomin GT" (RAPID, Ukraine). The simulation of electrical stimulation was the same as in group 2. The material for the morphological study was a fragment of the body of the lower jaw from the zone of the perforated defect. Immunohistochemical study was performed using rabbit anti-human SATB2 monoclonal antibody. RESULTS Results: In the regenerate filling the defect in the bone tissue of the lower jaw of rats, there was an increase in SATB2 expression under conditions of electrical stimulation; filling the defect with a synthetic bone graft material; simultaneous filling the defect with a synthetic bone graft material and electrical stimulation. The most pronounced expression of SATB2 was observed under conditions of simultaneous filling the defect with a synthetic bone graft material and electrical stimulation; minimally expressed - in conditions of filling the defect with a synthetic bone graft material; moderately expressed - under conditions of electrical stimulation. In the regenerate, in cases of all treatment methods, SATB2 was expressed by immune cells, fibroblastic differon cells, osteoblasts, and in case of electrical stimulation, also by adipocytes, vascular pericytes and endothelial cells, epidermis. CONCLUSION Conclusions: The activation of SATB2 expression identified by the authors is one of the mechanisms for stimulating reparative osteogenesis under the conditions of electrical stimulation; filling the defect with a synthetic bone graft material; simultaneous filling the defect with a synthetic bone graft material and electrical stimulation.
Collapse
Affiliation(s)
| | | | | | - Nataliia V Kapustnyk
- Public Nonprofit Organization of the Kharkiv District Council «Regional Clinical Perinatal Centre», Kharkiv, Ukraine
| | | | | |
Collapse
|
17
|
Lange F, Porath K, Sellmann T, Einsle A, Jaster R, Linnebacher M, Köhling R, Kirschstein T. Direct-Current Electrical Field Stimulation of Patient-Derived Colorectal Cancer Cells. BIOLOGY 2023; 12:1032. [PMID: 37508461 PMCID: PMC10376471 DOI: 10.3390/biology12071032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
Several cues for a directional migration of colorectal cancer cells were identified as being crucial in tumor progression. However, galvanotaxis, the directional migration in direct-current electrical fields, has not been investigated so far. Therefore, we asked whether direct-current electrical fields could be used to mobilize colorectal cancer cells along field vectors. For this purpose, five patient-derived low-passage cell lines were exposed to field strengths of 150-250 V/m in vitro, and migration along the field vectors was investigated. To further study the role of voltage-gated calcium channels on galvanotaxis and intracellular signaling pathways that are associated with migration of colorectal cancer cells, the cultures were exposed to selective inhibitors. In three out of five colorectal cancer cell lines, we found a preferred cathodal migration. The cellular integrity of the cells was not impaired by exposure of the cells to the selected field strengths. Galvanotaxis was sensitive to inhibition of voltage-gated calcium channels. Furthermore, signaling pathways such as AKT and MEK, but not STAT3, were also found to contribute to galvanotaxis in our in vitro model system. Overall, we identify electrical fields as an important contributor to the directional migration of colorectal cancer cells.
Collapse
Affiliation(s)
- Falko Lange
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Katrin Porath
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Tina Sellmann
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Anne Einsle
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Robert Jaster
- Division of Gastroenterology and Endocrinology, Department of Medicine II, Rostock University Medical Center, 18057 Rostock, Germany
| | - Michael Linnebacher
- Molecular Oncology and Immunotherapy, Clinic of General Surgery, Rostock University Medical Center, 18057 Rostock, Germany
| | - Rüdiger Köhling
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Timo Kirschstein
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany
| |
Collapse
|
18
|
Zhang X, Wang Z, Jiang H, Zeng H, An N, Liu B, Sun L, Fan Z. Self-powered enzyme-linked microneedle patch for scar-prevention healing of diabetic wounds. SCIENCE ADVANCES 2023; 9:eadh1415. [PMID: 37450590 PMCID: PMC10348682 DOI: 10.1126/sciadv.adh1415] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023]
Abstract
Diabetic wounds with complex pathological features and a difficult-to-heal nature remain a formidable challenge. To address this challenge, we design and fabricate a self-powered enzyme-linked microneedle (MN) patch composed of anode and cathode MN arrays, which respectively contain glucose oxidase (GOx) and horseradish peroxidase (HRP) encapsulated in ZIF-8 nanoparticles. The enzymatic cascade reaction in the MN patch can effectively reduce local hyperglycemia in diabetic wounds while generating stable microcurrents to promote rapid healing of diabetic wounds. Therefore, the diabetic wounds treated with this MN patch exhibit rapid, complete, and scar-preventative healing, which can be attributed to the synergistic actions of hypoglycemic, antibacterial, anti-inflammatory, and bioelectrical stimulation. In brief, the self-powered MN patch is an effective method to rapidly promote diabetic wound healing and prevent scar formation.
Collapse
Affiliation(s)
- Xiangli Zhang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, P.R. China
| | - Zhilong Wang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, P.R. China
| | - Hong Jiang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, P.R. China
| | - Huajing Zeng
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, P.R. China
| | - Nan An
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, P.R. China
| | - Bin Liu
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, P.R. China
| | - Luyi Sun
- Polymer Program, Institute of Materials Science and Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Zengjie Fan
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, P.R. China
| |
Collapse
|