1
|
Lavoie J, Fan J, Pourdeyhimi B, Boi C, Carbonell RG. Advances in high-throughput, high-capacity nonwoven membranes for chromatography in downstream processing: A review. Biotechnol Bioeng 2024; 121:2300-2317. [PMID: 37256765 DOI: 10.1002/bit.28457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/03/2023] [Accepted: 05/17/2023] [Indexed: 06/02/2023]
Abstract
Nonwoven membranes are highly engineered fibrous materials that can be manufactured on a large scale from a wide range of different polymers, and their surfaces can be modified using a large variety of different chemistries and ligands. The fiber diameters, surface areas, pore sizes, total porosities, and thicknesses of the nonwoven mats can be carefully controlled, providing many opportunities for creative approaches for the development of novel membranes with unique properties to meet the needs of the future of downstream processing. Fibrous membranes are already finding use in ultrafiltration, microfiltration, depth filtration, and, more recently, in membrane chromatography for product capture and impurity removal. This article summarizes the various methods of manufacturing nonwoven fabrics, and the many methods available for the modification of the fiber surfaces. It also reviews recent studies focused on the use of nonwoven fabric devices in membrane chromatography and provides some perspectives on the challenges that need to be overcome to increase binding capacities, decrease residence times, and reduce pressure drops so that eventually they can replace resin column chromatography in downstream process operations.
Collapse
Affiliation(s)
- Joseph Lavoie
- Biomanufacturing Training and Education Center, NC State University, Raleigh, North Carolina, USA
| | - Jinxin Fan
- Department of Chemical and Biomolecular Engineering, NC State University, Raleigh, North Carolina, USA
| | - Behnam Pourdeyhimi
- Department of Chemical and Biomolecular Engineering, NC State University, Raleigh, North Carolina, USA
- Nonwovens Institute, NC State University, Raleigh, North Carolina, USA
| | - Cristiana Boi
- Biomanufacturing Training and Education Center, NC State University, Raleigh, North Carolina, USA
- Department of Chemical and Biomolecular Engineering, NC State University, Raleigh, North Carolina, USA
- Department of Civil, Chemical, Environmental, and Materials Engineering, Alma Mater Studiorum-Università di Bologna, Bologna, Italy
| | - Ruben G Carbonell
- Biomanufacturing Training and Education Center, NC State University, Raleigh, North Carolina, USA
- Department of Chemical and Biomolecular Engineering, NC State University, Raleigh, North Carolina, USA
- National Institute for Innovation for Manufacturing Biopharmaceuticals (NIIMBL), University of Delaware, Newark, Delaware, USA
| |
Collapse
|
2
|
Kokol V, Vivod V. Cation-exchange performance of a citric-acid esterified cellulose nanofibrous membrane for highly-selective proteins' permeability and adsorption capacity. Carbohydr Polym 2023; 318:121134. [PMID: 37479444 DOI: 10.1016/j.carbpol.2023.121134] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/01/2023] [Accepted: 06/16/2023] [Indexed: 07/23/2023]
Abstract
The usage of low-cost, readily available, or even disposable, single-use membranes in macromolecules' purification and separation is still in the development phase. In this research, highly porous (>95 %), water- and compression stable cation-exchange membranes were prepared by freeze-casting using cellulose nanofibrils (CNF) and citric acid (CA) acting as a crosslinker and source of weak anionic (carboxylic) surface groups arising from the mono-esterified CA. The membranes were characterized by different analytical techniques, and evaluated for the ionic adsorption efficacy of different proteins in dead-end filtration mode using a Tri-buffer of pH 8. The membrane's internal microstructure (porosity and density) with the available (quantity and access) carboxylic groups was confirmed, to determine not only the proteins' specific (related to the net charged and molecular weight) adsorption dynamic (>52 % of positive Lysozyme/Cytochrome, <8 % of negative BSA/Myoglobin; ≤0.5 g/L) at extremely high flow rates (>3.000 hL/h*MPa*m2), but also their desorption (>97 %) and re-equilibration (using NaCl) with flux recovery (>80 %). Such efficiency was achieved with up to 5 consecutive filtering cycles. The high permeability (>87 %) of the spherical and negatively surface charged microparticles (used as models) also suggests the likelihood of removing larger microbial species, which, while retaining relatively smaller and positively charged proteins, further increases their potential in biopharma applications.
Collapse
Affiliation(s)
- Vanja Kokol
- University of Maribor, Faculty of Mechanical Engineering, Institute of Engineering Materials and Design, Smetanova ulica 17, SI-2000 Maribor, Slovenia.
| | - Vera Vivod
- University of Maribor, Faculty of Mechanical Engineering, Institute of Engineering Materials and Design, Smetanova ulica 17, SI-2000 Maribor, Slovenia.
| |
Collapse
|
3
|
Schwaminger SP, Zimmermann I, Berensmeier S. Current research approaches in downstream processing of pharmaceutically relevant proteins. Curr Opin Biotechnol 2022; 77:102768. [PMID: 35930843 DOI: 10.1016/j.copbio.2022.102768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 11/03/2022]
Abstract
Biopharmaceuticals and their production are on the rise. They are needed to treat and to prevent multiple diseases. Therefore, an urgent need for process intensification in downstream processing (DSP) has been identified to produce biopharmaceuticals more efficiently. The DSP currently accounts for the majority of production costs of pharmaceutically relevant proteins. This short review gathers essential research over the past 3 years that addresses novel solutions to overcome this bottleneck. The overview includes promising studies in the fields of chromatography, aqueous two-phase systems, precipitation, crystallization, magnetic separation, and filtration for the purification of pharmaceutically relevant proteins.
Collapse
Affiliation(s)
- Sebastian P Schwaminger
- Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, Graz, Austria; Bioseparation Engineering Group, School of Engineering and Design, Technical University of Munich, Garching, Germany.
| | - Ines Zimmermann
- Bioseparation Engineering Group, School of Engineering and Design, Technical University of Munich, Garching, Germany
| | - Sonja Berensmeier
- Bioseparation Engineering Group, School of Engineering and Design, Technical University of Munich, Garching, Germany.
| |
Collapse
|
4
|
Electrospun Hydrophobic Interaction Chromatography (HIC) Membranes for Protein Purification. MEMBRANES 2022; 12:membranes12070714. [PMID: 35877917 PMCID: PMC9324864 DOI: 10.3390/membranes12070714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022]
Abstract
Responsive membranes for hydrophobic interaction chromatography have been fabricated by functionalizing poly(N-vinylcaprolactam) (PVCL) ligands on the substrate of electrospun regenerated cellulose nanofibers. Both static and dynamic binding capacities and product recovery were investigated using bovine serum albumin (BSA) and Immunoglobulin G (IgG) as model proteins. The effects of ligand chain length and chain density on static binding capacity were also studied. A static binding capacity of ~25 mg/mL of membrane volume (MV) can be achieved in optimal ligand grafting conditions. For dynamic binding studies, protein binding capacity increased with protein concentration from 0.1 to 1.0 g/L. Dynamic binding capacity increased from ~8 mg/mL MV at 0.1 g/L BSA to over 30 mg/mL at 1.0 g/L BSA. However, BSA recovery decreased as protein concentration increased from ~98% at 0.1 g/L BSA to 51% at 1 g/L BSA loading concentration. There is a clear trade-off between binding capacity and recovery rate. The electrospun substrate with thicker fibers and more open pore structures is superior to thinner fibrous membrane substrates.
Collapse
|
5
|
Yang X, Merenda A, AL-Attabi R, Dumée LF, Zhang X, Thang SH, Pham H, Kong L. Towards next generation high throughput ion exchange membranes for downstream bioprocessing: A review. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120325] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Yang X, Hsia T, Merenda A, AL-Attabi R, Dumee LF, Thang SH, Kong L. Constructing novel nanofibrous polyacrylonitrile (PAN)-based anion exchange membrane adsorber for protein separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Hydrophilic modification of poly(aryl sulfone) membrane materials toward highly-efficient environmental remediation. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-021-2115-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Zhang S, Tanioka A, Matsumoto H. De Novo Ion-Exchange Membranes Based on Nanofibers. MEMBRANES 2021; 11:652. [PMID: 34564469 PMCID: PMC8469869 DOI: 10.3390/membranes11090652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022]
Abstract
The unique functions of nanofibers (NFs) are based on their nanoscale cross-section, high specific surface area, and high molecular orientation, and/or their confined polymer chains inside the fibers. The introduction of ion-exchange (IEX) groups on the surface and/or inside the NFs provides de novo ion-exchangers. In particular, the combination of large surface areas and ionizable groups in the IEX-NFs improves their performance through indices such as extremely rapid ion-exchange kinetics and high ion-exchange capacities. In reality, the membranes based on ion-exchange NFs exhibit superior properties such as high catalytic efficiency, high ion-exchange and adsorption capacities, and high ionic conductivities. The present review highlights the fundamental aspects of IEX-NFs (i.e., their unique size-dependent properties), scalable production methods, and the recent advancements in their applications in catalysis, separation/adsorption processes, and fuel cells, as well as the future perspectives and endeavors of NF-based IEMs.
Collapse
Affiliation(s)
- Shaoling Zhang
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Akihiko Tanioka
- Interdisciplinary Cluster for Cutting Edge Research, Institute of Carbon Science and Technology, Shinshu University, 4-17-1, Wakasato, Nagano 380-8553, Japan;
| | - Hidetoshi Matsumoto
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
9
|
Chen ST, Wickramasinghe SR, Qian X. High Performance Mixed-Matrix Electrospun Membranes for Ammonium Removal from Wastewaters. MEMBRANES 2021; 11:membranes11060440. [PMID: 34208237 PMCID: PMC8230858 DOI: 10.3390/membranes11060440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 11/30/2022]
Abstract
Mixed-matrix electrospun membranes were developed to investigate ammonium removal from low ammonium concentration wastewaters for the first time. Particles derived from the inexpensive zeolite 13X were successfully incorporated into polyethersulfone (PES) matrices. The fabricated mixed-matrix electrospun membranes demonstrate high ammonium removal capacity reaching over 55 mg/gzeolite, more than 2.5 times higher than the previously fabricated mixed-matrix membranes via non-solvent induced phase inversion. Moreover, the membranes fabricated exhibit high permeability and ease of regeneration. Over 90% of total ammonium nitrogen (TAN) can be removed from low TAN wastewaters such as aquaculture wastewaters. In addition to zeolite 13X, other zeolite particles including zeolite Y, zeolite 3A and 4A were also incorporated into the membrane matrix. The inexpensive zeolite 13X show the highest ammonium exchange capacity. Particle type, loading and the level of its dispersion all affect TAN removal capacity.
Collapse
Affiliation(s)
- Shu-Ting Chen
- Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (S.-T.C.); (S.R.W.)
| | - Sumith Ranil Wickramasinghe
- Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (S.-T.C.); (S.R.W.)
| | - Xianghong Qian
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
- Correspondence: ; Tel.: +1-479-575-8401
| |
Collapse
|
10
|
High-Performance Polyacrylic Acid-Grafted PVDF Nanofiltration Membrane with Good Antifouling Property for the Textile Industry. Polymers (Basel) 2020; 12:polym12112443. [PMID: 33105765 PMCID: PMC7690592 DOI: 10.3390/polym12112443] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 02/02/2023] Open
Abstract
In the textile industry, a high-efficiency dye removal and low-retention of salt is demanded for recycling wastewater. In this study, polyvinylidene fluoride (PVDF) ultrafiltration membrane was transformed to a negatively charged loose nanofiltration (NF) membrane through UV-grafting of acrylic acid. At the optimal exposure of PVDF membrane in UV light for 5 min, the membrane had a high dye recovery above 99% (Congo red and Eriochrome® Black T) and a low sodium chloride (NaCl) rejection of less than 15% along with pure water flux of 26 L∙m−2∙h−1∙bar−1. Its antifouling and oleophobicity surface properties were verified using fluorescent- bovine serum albumin (BSA) and underwater mineral oil contact angle, respectively. According to the fluorescent microscopic images, the modified membrane had ten times lower adhesion of protein on the surface than the unmodified membrane. The underwater oil contact angle was raised from 110° to 155°. Moreover, the salt rejection followed this sequence: Na2SO4 > MgSO4 > NaCl > MgCl2, which agreed with the typical negatively charged NF membrane. In addition, the physicochemical characterization of membranes was further investigated to understand and link to the membrane performance, such as surface functional group, surface elements analysis, surface roughness/morphology, and surface hydrophilicity.
Collapse
|
11
|
Nadar S, Shooter G, Somasundaram B, Shave E, Baker K, Lua LHL. Intensified Downstream Processing of Monoclonal Antibodies Using Membrane Technology. Biotechnol J 2020; 16:e2000309. [PMID: 33006254 DOI: 10.1002/biot.202000309] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The need to intensify downstream processing of monoclonal antibodies to complement the advances in upstream productivity has led to increased attention toward implementing membrane technologies. With the industry moving toward continuous operations and single use processes, membrane technologies show promise in fulfilling the industry needs due to their operational flexibility and ease of implementation. Recently, the applicability of membrane-based unit operations in integrating the downstream process has been explored. In this article, the major developments in the application of membrane-based technologies in the bioprocessing of monoclonal antibodies are reviewed. The recent progress toward developing intensified end-to-end bioprocesses and the critical role membrane technology will play in achieving this goal are focused upon.
Collapse
Affiliation(s)
- Sathish Nadar
- Australian Research Council Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Corner College and Cooper Roads, Brisbane, Queensland, 4072, Australia
| | - Gary Shooter
- Australian Research Council Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Corner College and Cooper Roads, Brisbane, Queensland, 4072, Australia
| | - Balaji Somasundaram
- Protein Expression Facility, The University of Queensland, Corner College and Cooper Roads, Brisbane, Queensland, 4072, Australia
| | - Evan Shave
- Australian Research Council Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Corner College and Cooper Roads, Brisbane, Queensland, 4072, Australia.,Pharma services group, Thermo Fisher Scientific, 37 Kent St, Woolloongabba, Brisbane, Queensland, 4102, Australia
| | - Kym Baker
- Pharma services group, Thermo Fisher Scientific, 37 Kent St, Woolloongabba, Brisbane, Queensland, 4102, Australia
| | - Linda H L Lua
- Australian Research Council Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Corner College and Cooper Roads, Brisbane, Queensland, 4072, Australia.,Protein Expression Facility, The University of Queensland, Corner College and Cooper Roads, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
12
|
Zwitterionic Polymer Brush Grafted on Polyvinylidene Difluoride Membrane Promoting Enhanced Ultrafiltration Performance with Augmented Antifouling Property. Polymers (Basel) 2020; 12:polym12061303. [PMID: 32517332 PMCID: PMC7361682 DOI: 10.3390/polym12061303] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 11/16/2022] Open
Abstract
Superhydrophilic zwitterions on the membrane surface have been widely exploited to improve antifouling properties. However, the problematic formation of a <20 nm zwitterionic layer on the hydrophilic surface remains a challenge in wastewater treatment. In this work, we focused on the energy consumption and time control of polymerization and improved the strong hydrophilicity of the modified polyvinylidene difluoride (PVDF) membrane. The sulfobetaine methacrylate (SBMA) monomer was treated with UV-light through polymerization on the PVDF membrane at a variable time interval of 30 to 300 s to grow a poly-SBMA (PSBMA) chain and improve the membrane hydrophilicity. We examined the physiochemical properties of as-prepared PVDF and PVDF-PSBMAx using numeric analytical tools. Then, the zwitterionic polymer with controlled performance was grafted onto the SBMA through UV-light treatment to improve its antifouling properties. The PVDF-PSBMA120s modified membrane exhibited a greater flux rate and indicated bovine serum albumin (BSA) rejection performance. PVDF-PSBMA120s and unmodified PVDF membranes were examined for their antifouling performance using up to three cycles dynamic test using BSA as foulant. The PVDF-modified PSBMA polymer improved the antifouling properties in this experiment. Overall, the resulting membrane demonstrated an enhancement in the hydrophilicity and permeability of the membrane and simultaneously augmented its antifouling properties.
Collapse
|