Curtin AM, Buckley HL. Biofouling detection methods that are widely applicable and useful across disciplines: a mini-review.
BIOFOULING 2021;
37:494-505. [PMID:
34193005 DOI:
10.1080/08927014.2021.1926998]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/23/2021] [Accepted: 05/03/2021] [Indexed: 06/13/2023]
Abstract
Biofouling, or the build-up of microorganisms in a biofilm at the solid-water or water-air interface, is an interdisciplinary problem. Biofouling causes various issues including clogging systems, contaminating devices, and creating infections that are extremely difficult to treat, to name but a few. Therefore, engineers, pharmacologists, microbiologists, wastewater treatment operators, chemists, food preservative formulators, home and personal care product formulators, and toxicologists all play a role in studying and have an interest in solving biofouling. High-throughput studies on biofilm prevention and removal can take the form of biofilm antimicrobial microdilution susceptibility (BAMS) tests. Due to vested interests of many disciplines, the results from these tests should be applicable and useful to each discipline. This critical review analyses the focuses, biological implications, and metrics required by each discipline. The possible detection methods that could satisfy each desired metric are then summarized. The detection methods were analysed in order to recommend two methods of biofilm detection, Crystal Violet stain and the LIVE/DEAD BacLight stain, which correspond with three metrics including total biomass, log reduction, and the MIC, BPC, MBIC, MBC, BBC, and/or MBEC values. Determining these three metrics for each BAMS test will allow this type of research to be widely applicable and useful across many disciplines.
Collapse