1
|
Tottoli G, Galier S, Roux-de Balmann H. Influence of Feed Composition on the Separation Factor during Nanofiltration of Organic Acids. MEMBRANES 2024; 14:166. [PMID: 39195418 DOI: 10.3390/membranes14080166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024]
Abstract
In this study, nanofiltration experiments using synthetic solutions containing acetate, butyrate, and lactate are carried out to assess the impact of the feed composition, i.e., feed concentration and feed proportions, on the separation factor of couples of solutes in binary and ternary solutions. In binary solutions, no influence of the solute proportions in the feed was pointed out, whatever the couple of solutes. The separation factor of acetate/butyrate and acetate/lactate was found to decrease with increasing feed concentration, while that of lactate/butyrate remained constant. The separation factors of acetate/lactate and lactate/butyrate were identical in ternary solutions compared to binary ones, showing no impact of the addition of the third solute. In ternary solutions, the presence of lactate decreased the separation factor of acetate/butyrate, but this decrease was not influenced by the proportion of lactate.
Collapse
Affiliation(s)
- Gustavo Tottoli
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 118 Route de Narbonne, CEDEX 4, 31062 Toulouse, France
| | - Sylvain Galier
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 118 Route de Narbonne, CEDEX 4, 31062 Toulouse, France
| | - Hélène Roux-de Balmann
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 118 Route de Narbonne, CEDEX 4, 31062 Toulouse, France
| |
Collapse
|
2
|
Zhang X, Wang J, Zhang Y, Qing W, Lansing S, Shi J, Zhang W, Wang ZW. Anhydrous volatile fatty acid extraction through omniphobic membranes by hydrophobic deep eutectic solvents: Mechanistic understanding and future perspective. WATER RESEARCH 2024; 257:121654. [PMID: 38701552 DOI: 10.1016/j.watres.2024.121654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/17/2024] [Accepted: 04/20/2024] [Indexed: 05/05/2024]
Abstract
Volatile fatty acids (VFAs) derived from arrested anaerobic digestion (AD) can be recovered as a valuable commodity for value-added synthesis. However, separating VFAs from digestate with complex constituents and a high-water content is an energy-prohibitive process. This study developed an innovative technology to overcome this barrier by integrating deep eutectic solvents (DESs) with an omniphobic membrane into a membrane contactor for efficient extraction of anhydrous VFAs with low energy consumption. A kinetic model was developed to elucidate the mechanistic differences between this novel omniphobic membrane-enabled DES extraction and the previous hydrophobic membrane-enabled NaOH extraction. Experimental results and mechanistic modeling suggested that VFA extraction by the DES is a reversible adsorption process facilitating subsequent VFA separation via anhydrous distillation. High vapor pressure of shorter-chain VFAs and low Nernst distribution coefficients of longer-chain VFAs contributed to DES-driven extraction, which could enable continuous and in-situ recovery and conversion of VFAs from AD streams.
Collapse
Affiliation(s)
- Xueyao Zhang
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States
| | - Jiefu Wang
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States
| | - Yuxuan Zhang
- Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY 40546, United States
| | - Weihua Qing
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Stephanie Lansing
- Department of Environmental Science and Technology, University of Maryland, College Park, MD 20742, United States
| | - Jian Shi
- Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY 40546, United States
| | - Wen Zhang
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Zhi-Wu Wang
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States.
| |
Collapse
|
3
|
Pîrțac A, Nechifor AC, Tanczos SK, Oprea OC, Grosu AR, Matei C, Grosu VA, Vasile BȘ, Albu PC, Nechifor G. Emulsion Liquid Membranes Based on Os-NP/n-Decanol or n-Dodecanol Nanodispersions for p-Nitrophenol Reduction. Molecules 2024; 29:1842. [PMID: 38675662 PMCID: PMC11055161 DOI: 10.3390/molecules29081842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Membrane materials with osmium nanoparticles have been recently reported for bulk membranes and supported composite membrane systems. In the present paper, a catalytic material based on osmium dispersed in n-decanol (nD) or n-dodecanol (nDD) is presented, which also works as an emulsion membrane. The hydrogenation of p-nitrophenol (PNP) is carried out in a reaction and separation column in which an emulsion in the acid-receiving phase is dispersed in an osmium nanodispersion in n-alcohols. The variables of the PNP conversion process and p-aminophenol (PAP) transport are as follows: the nature of the membrane alcohol, the flow regime, the pH difference between the source and receiving phases and the number of operating cycles. The conversion results are in all cases better for nD than nDD. The counter-current flow regime is superior to the co-current flow. Increasing the pH difference between the source and receiving phases amplifies the process. The number of operating cycles is limited to five, after which the regeneration of the membrane dispersion is required. The apparent catalytic rate constant (kapp) of the new catalytic material based on the emulsion membrane with the nanodispersion of osmium nanoparticles (0.1 × 10-3 s-1 for n-dodecanol and 0.9 × 10-3 s-1 for n-decanol) is lower by an order of magnitude compared to those based on adsorption on catalysts from the platinum metal group. The advantage of the tested membrane catalytic material is that it extracts p-aminophenol in the acid-receiving phase.
Collapse
Affiliation(s)
- Andreia Pîrțac
- Analytical Chemistry and Environmental Engineering Department, University POLITEHNICA of Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania; (A.P.); (A.C.N.); (A.R.G.)
| | - Aurelia Cristina Nechifor
- Analytical Chemistry and Environmental Engineering Department, University POLITEHNICA of Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania; (A.P.); (A.C.N.); (A.R.G.)
| | - Szidonia-Katalin Tanczos
- Department of Bioengineering, University Sapientia of Miercurea-Ciuc, 500104 Miercurea-Ciuc, Romania;
| | - Ovidiu Cristian Oprea
- National Research Center for Micro and Nanomaterials, University POLITEHNICA of Bucharest, 060042 Bucharest, Romania; (O.C.O.); (B.Ș.V.)
- National Research Center for Food Safety, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Faculty of Chemical Engineering and Biotechnologies, University POLITEHNICA of Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Alexandra Raluca Grosu
- Analytical Chemistry and Environmental Engineering Department, University POLITEHNICA of Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania; (A.P.); (A.C.N.); (A.R.G.)
| | - Cristian Matei
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University POLITEHNICA of Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania;
| | - Vlad-Alexandru Grosu
- Department of Electronic Technology and Reliability, Faculty of Electronics, Telecommunications and Information Technology, University POLITEHNICA of Bucharest, 061071 Bucharest, Romania
| | - Bogdan Ștefan Vasile
- National Research Center for Micro and Nanomaterials, University POLITEHNICA of Bucharest, 060042 Bucharest, Romania; (O.C.O.); (B.Ș.V.)
| | - Paul Constantin Albu
- Radioisotopes and Radiation Metrology Department (DRMR), IFIN Horia Hulubei, 023465 Măgurele, Romania;
| | - Gheorghe Nechifor
- Analytical Chemistry and Environmental Engineering Department, University POLITEHNICA of Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania; (A.P.); (A.C.N.); (A.R.G.)
| |
Collapse
|
4
|
Bóna Á, Galambos I, Nemestóthy N. Progress towards Stable and High-Performance Polyelectrolyte Multilayer Nanofiltration Membranes for Future Wastewater Treatment Applications. MEMBRANES 2023; 13:368. [PMID: 37103795 PMCID: PMC10146247 DOI: 10.3390/membranes13040368] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/09/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
The increasing demand for nanofiltration processes in drinking water treatment, industrial separation and wastewater treatment processes has highlighted several shortcomings of current state-of-the-art thin film composite (TFC NF) membranes, including limitations in chemical resistance, fouling resistance and selectivity. Polyelectrolyte multilayer (PEM) membranes provide a viable, industrially applicable alternative, providing significant improvements in these limitations. Laboratory experiments using artificial feedwaters have demonstrated selectivity an order of magnitude higher than polyamide NF, significantly higher fouling resistance and excellent chemical resistance (e.g., 200,000 ppmh chlorine resistance and stability over the 0-14 pH range). This review provides a brief overview of the various parameters that can be modified during the layer-by-layer procedure to determine and fine-tune the properties of the resulting NF membrane. The different parameters that can be adjusted during the layer-by-layer process are presented, which are used to optimize the properties of the resulting nanofiltration membrane. Substantial progress in PEM membrane development is presented, particularly selectivity improvements, of which the most promising route seems to be asymmetric PEM NF membranes, offering a breakthrough in active layer thickness and organic/salt selectivity: an average of 98% micropollutant rejection coupled with a NaCl rejection below 15%. Advantages for wastewater treatment are highlighted, including high selectivity, fouling resistance, chemical stability and a wide range of cleaning methods. Additionally, disadvantages of the current PEM NF membranes are also outlined; while these may impede their use in some industrial wastewater applications, they are largely not restrictive. The effect of realistic feeds (wastewaters and challenging surface waters) on PEM NF membrane performance is also presented: pilot studies conducted for up to 12 months show stable rejection values and no significant irreversible fouling. We close our review by identifying research areas where further studies are needed to facilitate the adoption of this notable technology.
Collapse
Affiliation(s)
- Áron Bóna
- Soós Ernő Research and Development Center, University of Pannonia, Vár u. 8., H-8800 Nagykanizsa, Hungary
| | - Ildikó Galambos
- Soós Ernő Research and Development Center, University of Pannonia, Vár u. 8., H-8800 Nagykanizsa, Hungary
| | - Nándor Nemestóthy
- Research Institute on Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem u. 10., H-8200 Veszprém, Hungary
| |
Collapse
|
5
|
Bóna Á, Varga Á, Galambos I, Nemestóthy N. Dealcoholization of Unfiltered and Filtered Lager Beer by Hollow Fiber Polyelectrolyte Multilayer Nanofiltration Membranes-The Effect of Ion Rejection. MEMBRANES 2023; 13:283. [PMID: 36984669 PMCID: PMC10058455 DOI: 10.3390/membranes13030283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Membrane-based beverage dealcoholization is a successful process for producing low- and non-alcoholic beer and represents a fast-growing industry. Polyamide NF and RO membranes are commonly applied for this process. Polyelectrolyte multilayer (PEM) NF membranes are emerging as industrially relevant species, and their unique properties (usually hollow fiber geometry, high and tunable selectivity, low fouling) underlines the importance of testing them in the food industry as well. To test PEM NF membranes for beer dealcoholization at a small pilot scale, we dealcoholized filtered and unfiltered lager beer with the tightest available commercial polyelectrolyte multilayer NF membrane (NX Filtration dNF40), which has a MWCO = 400 Da, which is quite high for these purposes. Dealcoholization is possible with a reasonable flux (10 L/m2h) at low pressures (5-8.6 bar) with a real extract loss of 15-18% and an alcohol passage of ~100%. Inorganic salt passage is high (which is typical for PEM NF membranes), which greatly affected beer flavor. During the dealcoholization process, the membrane underwent changes which substantially increased its salt rejection values (MgSO4 passage decreased fourfold) while permeance loss was minimal (less than 10%). According to our sensory evaluation, the process yielded an acceptable tasting beer which could be greatly enhanced by the addition of the lost salts and glycerol.
Collapse
Affiliation(s)
- Áron Bóna
- Soós Ernő Research and Development Center, University of Pannonia, Vár u. 8, H-8800 Nagykanizsa, Hungary
| | - Áron Varga
- Department of Research and Development, Pécsi Brewery, Alkotmány utca 94, H-7624 Pécs, Hungary
| | - Ildikó Galambos
- Soós Ernő Research and Development Center, University of Pannonia, Vár u. 8, H-8800 Nagykanizsa, Hungary
| | - Nándor Nemestóthy
- Research Institute on Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem u. 10, H-8200 Veszprém, Hungary
| |
Collapse
|
6
|
Current Status and Prospects of Valorizing Organic Waste via Arrested Anaerobic Digestion: Production and Separation of Volatile Fatty Acids. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation9010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Volatile fatty acids (VFA) are intermediary degradation products during anaerobic digestion (AD) that are subsequently converted to methanogenic substrates, such as hydrogen (H2), carbon dioxide (CO2), and acetic acid (CH3COOH). The final step of AD is the conversion of these methanogenic substrates into biogas, a mixture of methane (CH4) and CO2. In arrested AD (AAD), the methanogenic step is suppressed to inhibit VFA conversion to biogas, making VFA the main product of AAD, with CO2 and H2. VFA recovered from the AAD fermentation can be further converted to sustainable biofuels and bioproducts. Although this concept is known, commercialization of the AAD concept has been hindered by low VFA titers and productivity and lack of cost-effective separation methods for recovering VFA. This article reviews the different techniques used to rewire AD to AAD and the current state of the art of VFA production with AAD, emphasizing recent developments made for increasing the production and separation of VFA from complex organic materials. Finally, this paper discusses VFA production by AAD could play a pivotal role in producing sustainable jet fuels from agricultural biomass and wet organic waste materials.
Collapse
|
7
|
Asghar N, Lee H, Jang D, Jang A. Recovery of volatile fatty acids using forward osmosis: Influence of solution chemistry, temperature, and membrane orientation. CHEMOSPHERE 2022; 303:134814. [PMID: 35525449 DOI: 10.1016/j.chemosphere.2022.134814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/24/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
This study investigates the suitability of forward osmosis (FO) for recovery of volatile fatty acids (VFAs) from anaerobic digesters (ADs) and identifies the conditions favorable for commercially viable maximum recovery of VFAs. The recovery efficiency of VFAs is evaluated using a polyamide (PA)-based thin-film composite (TFC) membrane. The pH (3, 5, 7, and 9), temperature (20 °C and 40 °C), and membrane orientation (active-layer [AL]-facing FS and AL facingDS) were changed, and water flux, reverse salt flux (RSF), rejection rate, and concentration factor (CF) were evaluated for five VFAs. The water flux and RSF were higher at a higher pH, temperature and in AL-DS mode. A low rejection rate of 23-36% and a CF of 0.20-1.90 were observed at a pH below the pKa due to the solubility of molecular VFAs, while rejection rates was 80-97% and concentration increase by 1 to 4.8-fold at a pH above the pKa values were achieved due to deprotonation of VFAs and changes in membrane surface charges. With an equal increase in temperature of FS and DS from 20 to 40 °C, the rejection rate decreased by almost 20%. While with a transmembrane temperature change, a decrease in rejection rate of 20% was observed compared with baseline experiments due to decreases in viscosity and high diffusivity. In AL-DS mode, VFAs were rejected at a rate of almost 20% lower than that in AL-FS mode due to internal concentration polarization and membrane properties. These findings provide useful information on the factors that can influence optimal recovery rates of VFAs.
Collapse
Affiliation(s)
- Nosheen Asghar
- Department of Global Smart City, Sungkyunkwan University (SKKU), (16419) 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, Republic of Korea.
| | - Hyeonho Lee
- Department of Global Smart City, Sungkyunkwan University (SKKU), (16419) 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, Republic of Korea.
| | - Duksoo Jang
- Department of Global Smart City, Sungkyunkwan University (SKKU), (16419) 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, Republic of Korea.
| | - Am Jang
- Department of Global Smart City, Sungkyunkwan University (SKKU), (16419) 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
8
|
Pratofiorito G, Horn H, Saravia F. Differentiating fouling on the membrane and on the spacer in low-pressure reverse-osmosis under high organic load using optical coherence tomography. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Lau HS, Lau SK, Soh LS, Hong SU, Gok XY, Yi S, Yong WF. State-of-the-Art Organic- and Inorganic-Based Hollow Fiber Membranes in Liquid and Gas Applications: Looking Back and Beyond. MEMBRANES 2022; 12:539. [PMID: 35629866 PMCID: PMC9144028 DOI: 10.3390/membranes12050539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022]
Abstract
The aggravation of environmental problems such as water scarcity and air pollution has called upon the need for a sustainable solution globally. Membrane technology, owing to its simplicity, sustainability, and cost-effectiveness, has emerged as one of the favorable technologies for water and air purification. Among all of the membrane configurations, hollow fiber membranes hold promise due to their outstanding packing density and ease of module assembly. Herein, this review systematically outlines the fundamentals of hollow fiber membranes, which comprise the structural analyses and phase inversion mechanism. Furthermore, illustrations of the latest advances in the fabrication of organic, inorganic, and composite hollow fiber membranes are presented. Key findings on the utilization of hollow fiber membranes in microfiltration (MF), nanofiltration (NF), reverse osmosis (RO), forward osmosis (FO), pervaporation, gas and vapor separation, membrane distillation, and membrane contactor are also reported. Moreover, the applications in nuclear waste treatment and biomedical fields such as hemodialysis and drug delivery are emphasized. Subsequently, the emerging R&D areas, precisely on green fabrication and modification techniques as well as sustainable materials for hollow fiber membranes, are highlighted. Last but not least, this review offers invigorating perspectives on the future directions for the design of next-generation hollow fiber membranes for various applications. As such, the comprehensive and critical insights gained in this review are anticipated to provide a new research doorway to stimulate the future development and optimization of hollow fiber membranes.
Collapse
Affiliation(s)
- Hui Shen Lau
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Siew Kei Lau
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Leong Sing Soh
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Seang Uyin Hong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Xie Yuen Gok
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Shouliang Yi
- U.S. Department of Energy, National Energy Technology Laboratory, 626 Cochrans Mill Rd, Pittsburgh, PA 15236, USA;
| | - Wai Fen Yong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
10
|
Elhami V, Antunes EC, Temmink H, Schuur B. Recovery Techniques Enabling Circular Chemistry from Wastewater. Molecules 2022; 27:1389. [PMID: 35209179 PMCID: PMC8877087 DOI: 10.3390/molecules27041389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 12/04/2022] Open
Abstract
In an era where it becomes less and less accepted to just send waste to landfills and release wastewater into the environment without treatment, numerous initiatives are pursued to facilitate chemical production from waste. This includes microbial conversions of waste in digesters, and with this type of approach, a variety of chemicals can be produced. Typical for digestion systems is that the products are present only in (very) dilute amounts. For such productions to be technically and economically interesting to pursue, it is of key importance that effective product recovery strategies are being developed. In this review, we focus on the recovery of biologically produced carboxylic acids, including volatile fatty acids (VFAs), medium-chain carboxylic acids (MCCAs), long-chain dicarboxylic acids (LCDAs) being directly produced by microorganisms, and indirectly produced unsaturated short-chain acids (USCA), as well as polymers. Key recovery techniques for carboxylic acids in solution include liquid-liquid extraction, adsorption, and membrane separations. The route toward USCA is discussed, including their production by thermal treatment of intracellular polyhydroxyalkanoates (PHA) polymers and the downstream separations. Polymers included in this review are extracellular polymeric substances (EPS). Strategies for fractionation of the different fractions of EPS are discussed, aiming at the valorization of both polysaccharides and proteins. It is concluded that several separation strategies have the potential to further develop the wastewater valorization chains.
Collapse
Affiliation(s)
- Vahideh Elhami
- Sustainable Process Technology Group, Process and Catalysis Cluster, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands; (V.E.); (E.C.A.)
| | - Evelyn C. Antunes
- Sustainable Process Technology Group, Process and Catalysis Cluster, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands; (V.E.); (E.C.A.)
- Wetsus—European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands;
| | - Hardy Temmink
- Wetsus—European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands;
- Department of Environmental Technology, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Boelo Schuur
- Sustainable Process Technology Group, Process and Catalysis Cluster, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands; (V.E.); (E.C.A.)
| |
Collapse
|
11
|
Sewerin T, Elshof MG, Matencio S, Boerrigter M, Yu J, de Grooth J. Advances and Applications of Hollow Fiber Nanofiltration Membranes: A Review. MEMBRANES 2021; 11:890. [PMID: 34832119 PMCID: PMC8625000 DOI: 10.3390/membranes11110890] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 11/29/2022]
Abstract
Hollow fiber nanofiltration (NF) membranes have gained increased attention in recent years, partly driven by the availability of alternatives to polyamide-based dense separation layers. Moreover, the global market for NF has been growing steadily in recent years and is expected to grow even faster. Compared to the traditional spiral-wound configuration, the hollow fiber geometry provides advantages such as low fouling tendencies and effective hydraulic cleaning possibilities. The alternatives to polyamide layers are typically chemically more stable and thus allow operation and cleaning at more extreme conditions. Therefore, these new NF membranes are of interest for use in a variety of applications. In this review, we provide an overview of the applications and emerging opportunities for these membranes. Next to municipal wastewater and drinking water processes, we have put special focus on industrial applications where hollow fiber NF membranes are employed under more strenuous conditions or used to recover specific resources or solutes.
Collapse
Affiliation(s)
- Tim Sewerin
- NX Filtration, Josink Esweg 44, 7545 PN Enschede, The Netherlands; (T.S.); (M.G.E.)
| | - Maria G. Elshof
- NX Filtration, Josink Esweg 44, 7545 PN Enschede, The Netherlands; (T.S.); (M.G.E.)
| | - Sonia Matencio
- LEITAT Technological Center, C/Pallars, 179-185, 08005 Barcelona, Spain; (S.M.); (M.B.)
| | - Marcel Boerrigter
- LEITAT Technological Center, C/Pallars, 179-185, 08005 Barcelona, Spain; (S.M.); (M.B.)
| | - Jimmy Yu
- Pepsi Co., Inc., Global R & D, 350 Columbus Ave, Valhalla, NY 10595, USA;
| | - Joris de Grooth
- NX Filtration, Josink Esweg 44, 7545 PN Enschede, The Netherlands; (T.S.); (M.G.E.)
- Membrane Science & Technology, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
12
|
Impact of the Recovery on Concentrating Acetic Acid with Low-Pressure Reverse-Osmosis Membranes. MEMBRANES 2021; 11:membranes11100742. [PMID: 34677507 PMCID: PMC8540121 DOI: 10.3390/membranes11100742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 12/04/2022]
Abstract
This work deals with the optimization of the concentration of volatile fatty acids (VFAs) using low-pressure reverse osmosis (LPRO) membranes. Membrane filtration of a synthetic solution simulating the product of biomass hydrolysis was performed. Experiments were run on two flat-sheet XLE membranes under 22 and 25 bar in continuous operation mode. Separation efficiency was evaluated for different recoveries. A correlation between the osmotic pressure of the concentrate and the parameter Rc, representative of the separation efficiency, was found. Under the conditions of the present study and taking into consideration the rejection properties of the applied membrane, a recovery of 33% and 44% is recommendable to maximize the ratio between the concentration of acetate in the concentrate and permeate and thus increase the total reclaim of acetic acid.
Collapse
|