Maurya S, Pal P, Saxena A, Zhang D. The sources, leaching, remediation, and environmental concerns associated with groundwater salinity.
ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023;
30:103405-103423. [PMID:
37698790 DOI:
10.1007/s11356-023-29601-7]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/26/2023] [Indexed: 09/13/2023]
Abstract
Water resources management and sustainable development depend on the quality of groundwater as a major source of fresh water. As a result of rising water demand in emerging nations and overexploitation, groundwater quality has declined globally in many aquifers. One of the most significant elements that lower the quality of the groundwater is salinization. This review is to provide an overview of various materials that are used in the design and development of innovative chitosan-based nanocomposite polymeric membranes for desalination. Biodegradable, non-toxic, affordable, and easily available, with film-forming ability and poly-functionality, chitosan is an ideal material for a sustainable future. Membrane preparation for desalination using chitosan helps to provide antibacterial and antioxidant activities, great chelating capabilities, and strong adsorption capacity. In this research, we discuss a variety of concepts concerning the different sources of elevated salinity and available desalination methods. A comprehensive framework was also developed to understand the leaching and percolation of salt in groundwater, an essential component of managing risks and ensuring safety. Additionally, we explain the various remediation strategies for reducing groundwater's salt concentration and explore the best method for desalination specifically focused on chitosan.
Collapse