1
|
Skverchinskaya E, Levdarovich N, Ivanov A, Mindukshev I, Bukatin A. Anticancer Drugs Paclitaxel, Carboplatin, Doxorubicin, and Cyclophosphamide Alter the Biophysical Characteristics of Red Blood Cells, In Vitro. BIOLOGY 2023; 12:biology12020230. [PMID: 36829507 PMCID: PMC9953263 DOI: 10.3390/biology12020230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Red blood cells (RBCs) are the most numerous cells in the body and perform gas exchange between all tissues. During the infusion of cancer chemotherapeutic (CT) agents, blood cells are the first ones to encounter aggressive cytostatics. Erythrocyte dysfunction caused by direct cytotoxic damage might be a part of the problem of chemotherapy-induced anemia-one of the most frequent side effects. The aim of the current study is to evaluate the functional status of RBCs exposed to mono and combinations of widely used commercial pharmaceutical CT drugs with different action mechanisms: paclitaxel, carboplatin, cyclophosphamide, and doxorubicin, in vitro. Using laser diffraction, flow cytometry, and confocal microscopy, we show that paclitaxel, having a directed effect on cytoskeleton proteins, by itself and in combination with carboplatin, caused the most marked abnormalities-loss of control of volume regulation, resistance to osmotic load, and stomatocytosis. Direct simulations of RBCs' microcirculation in microfluidic channels showed both the appearance of a subpopulation of cells with impaired velocity (slow damaged cells) and an increased number of cases of occlusions. In contrast to paclitaxel, such drugs as carboplatin, cyclophosphamide, and doxorubicin, whose main target in cancer cells is DNA, showed significantly less cytotoxicity to erythrocytes in short-term exposure. However, the combination of drugs had an additive effect. While the obtained results should be confirmed in in vivo models, one can envisioned that such data could be used for minimizing anemia side effects during cancer chemotherapy.
Collapse
Affiliation(s)
- Elisaveta Skverchinskaya
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223 Saint-Petersburg, Russia
| | - Nadezhda Levdarovich
- Laboratory of Renewable Energy Sources, Alferov University, 194021 Saint-Petersburg, Russia
| | - Alexander Ivanov
- Laboratory of Renewable Energy Sources, Alferov University, 194021 Saint-Petersburg, Russia
| | - Igor Mindukshev
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223 Saint-Petersburg, Russia
| | - Anton Bukatin
- Laboratory of Renewable Energy Sources, Alferov University, 194021 Saint-Petersburg, Russia
- Institute for Analytical Instrumentation of the Russian Academy of Sciences, 198095 Saint-Petersburg, Russia
- Correspondence:
| |
Collapse
|
2
|
Shimolina L, Gulin A, Khlynova A, Ignatova N, Druzhkova I, Gubina M, Zagaynova E, Kuimova M, Shirmanova M. Development of resistance to 5-fluorouracil affects membrane viscosity and lipid composition of cancer cells. Methods Appl Fluoresc 2022; 10. [PMID: 35970177 DOI: 10.1088/2050-6120/ac89cd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 08/15/2022] [Indexed: 11/12/2022]
Abstract
The investigations reported here were designed to determine whether the bulk plasma membrane is involved in mechanisms of acquired resistance of colorectal cancer cells to 5-fluorouracil (5-FU). Fluorescence lifetime imaging microscopy (FLIM) of live cultured cells stained with viscosity-sensitive probe BODIPY 2 was exploited to non-invasively assess viscosity in the course of treatment and adaptation to the drug. In parallel, lipid composition of membranes was examined with the time-of-flight secondary ion mass spectrometry (ToF-SIMS). Our results showed that a single treatment with 5-FU induced only temporal changes of viscosity in 5-FU sensitive cells immediately after adding the drug. Acquisition of chemoresistance was accompanied by persistent increase of viscosity, which was preserved upon treatment without any changes. Lipidomic analysis revealed that the resistant cells had a lower level of monounsaturated fatty acids and increased sphingomyelin or decreased phosphatidylcholine in their membranes, which partly explain increase of the viscosity. Thus, we propose that a high membrane viscosity mediates the acquisition of resistance to 5-FU.
Collapse
Affiliation(s)
- Liubov Shimolina
- Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Niznij Novgorod, Nižegorodskaâ, 603005, RUSSIAN FEDERATION
| | - Aleksandr Gulin
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygin st. 4, Moskva, Moskva, 119991, RUSSIAN FEDERATION
| | - Aleksandra Khlynova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Niznij Novgorod, Nižegorodskaâ, 603005, RUSSIAN FEDERATION
| | - Nadezhda Ignatova
- Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Niznij Novgorod, Nižegorodskaâ, 603005, RUSSIAN FEDERATION
| | - Irina Druzhkova
- Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Niznij Novgorod, Nižegorodskaâ, 603005, RUSSIAN FEDERATION
| | - Margarita Gubina
- Russian Academy of Sciences, Kosygin st. 4, Moskva, Moskva, 119991, RUSSIAN FEDERATION
| | - Elena Zagaynova
- Lobachevsky State University of Nizhny Novgorod, Gagarin Avenue 23, Niznij Novgorod, Nižegorodskaâ, 603950, RUSSIAN FEDERATION
| | - Marina Kuimova
- Department of Chemistry, Imperial College London, Exhibition Road, South Kensington, London , SW7 2AZ, London, SW7 2AZ, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Marina Shirmanova
- Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Niznij Novgorod, Nižegorodskaâ, 603005, RUSSIAN FEDERATION
| |
Collapse
|
3
|
Weaver E, O'Connor E, Cole DK, Hooker A, Uddin S, Lamprou DA. Microfluidic-mediated self-assembly of phospholipids for the delivery of biologic molecules. Int J Pharm 2022; 611:121347. [PMID: 34890709 DOI: 10.1016/j.ijpharm.2021.121347] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/31/2022]
Abstract
The encapsulation of biologic molecules using a microfluidic platform is a procedure that has been understudied but shows great promise from initial reported studies. The study focusses upon the encapsulation of bovine serum albumin (BSA) under various parameters and using multiple phospholipids to identify optimal conditions for the manufacturing of protein loaded lipid nanoparticles. Additionally, encapsulation of the enzyme trypsin (TRP) has been investigated to show the eligibility of the system to other biological medications. All liposomes were subject to rigorous physicochemical characterisation, including differential scanning calorimetry (DSC) and Fourier-transform infrared spectroscopy (FTIR), to document the successful synthesis of the liposomes. Drug-loaded liposome stability was investigated over a 28-day period at 5 °C and 37 °C, which showed encouraging results for 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) at all concentrations of BSA used. The sample containing 1 mg/ml BSA grew by only 10% over the study, which considering liposomes should be affected highly by biologic adsorption, shows great promise for the formulations. Encapsulation and in vitro release studies showed improved loading capacity for BSA compared to conventional methods, whilst maintaining a concise controlled release of the active pharmaceutical ingredient (API).
Collapse
Affiliation(s)
- Edward Weaver
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Edward O'Connor
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - David K Cole
- Immunocore, 92 Park Dr, Milton, Abingdon OX14 4RY, UK
| | - Andrew Hooker
- Immunocore, 92 Park Dr, Milton, Abingdon OX14 4RY, UK
| | - Shahid Uddin
- Immunocore, 92 Park Dr, Milton, Abingdon OX14 4RY, UK
| | - Dimitrios A Lamprou
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
4
|
Lipid Specific Membrane Interaction of Aptamers and Cytotoxicity. MEMBRANES 2021; 12:membranes12010037. [PMID: 35054563 PMCID: PMC8780203 DOI: 10.3390/membranes12010037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/21/2021] [Accepted: 12/25/2021] [Indexed: 11/17/2022]
Abstract
We aim to discover diagnostic tools to detect phosphatidylserine (PS) externalization on apoptotic cell surface using PS binding aptamers, AAAGAC and TAAAGA, and hence to understand chemotherapy drug efficacy when inducing apoptosis into cancer cells. The entropic fragment-based approach designed aptamers have been investigated to inspect three aspects: lipid specificity in aptamers' membrane binding and bilayer physical properties-induced regulation of binding mechanisms, the apoptosis-induced cancer cell surface binding of aptamers, and the aptamer-induced cytotoxicity. The liposome binding assays show preferred membrane binding of aptamers due to presence of PS in predominantly phosphatidylcholine-contained liposomes. Two membrane stiffness reducing amphiphiles triton X-100 and capsaicin were found to enhance membrane's aptamer adsorption suggesting that bilayer physical properties influence membrane's adsorption of drugs. Microscopic images of fluorescence-tagged aptamer treated LoVo cells show strong fluorescence intensity only if apoptosis is induced. Aptamers find enhanced PS molecules to bind with on the surface of apoptotic over nonapoptotic cells. In cytotoxicity experiments, TAAAGA (over poor PS binding aptamer CAGAAAAAAAC) was found cytotoxic towards RBL cells due to perhaps binding with nonapoptotic externalized PS randomly and thus slowly breaching plasma membrane integrity. In these three experimental investigations, we found aptamers to act on membranes at comparable concentrations and specifically with PS binding manner. Earlier, we reported the origins of actions through molecular mechanism studies-aptamers interact with lipids using mainly charge-based interactions. Lipids and aptamers hold distinguishable charge properties, and hence, lipid-aptamer association follows distinguishable energetics due to electrostatic and van der Waals interactions. We discover that our PS binding aptamers, due to lipid-specific interactions, appear as diagnostic tools capable of detecting drug-induced apoptosis in cancer cells.
Collapse
|
5
|
Camacho SA, Kobal MB, Moreira LG, Bistaffa MJ, Roque TC, Pazin WM, Toledo KA, Oliveira ON, Aoki PHB. The efficiency of photothermal action of gold shell-isolated nanoparticles against tumor cells depends on membrane interactions. Colloids Surf B Biointerfaces 2021; 211:112301. [PMID: 34968778 DOI: 10.1016/j.colsurfb.2021.112301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/17/2021] [Accepted: 12/16/2021] [Indexed: 12/26/2022]
Abstract
Photoinduced hyperthermia with nanomaterials has been proven effective in photothermal therapy (PTT) of tumor tissues, but a precise control in PTT requires determination of the molecular-level mechanisms. In this paper, we determined the mechanisms responsible for the action of photoexcited gold shell-isolated nanoparticles (AuSHINs) in reducing the viability of MCF7 (glandular breast cancer) and especially A549 (lung adenocarcinoma) cells in vitro experiments, while the photoinduced damage to healthy cells was much smaller. The photoinduced effects were more significant than using other nanomaterials, and could be explained by the different effects from incorporating AuSHINs on Langmuir monolayers from lipid extracts of tumoral (MCF7 and A549) and healthy cells. The incorporation of AuSHINs caused similar expansion of the Langmuir monolayers, but Fourier-transform infrared spectroscopy (FTIR) data of Langmuir-Schaefer films (LS) indicated distinct levels of penetration into the monolayers. AuSHINs penetrated deeper into the A549 extract monolayers, affecting the vibrational modes of polar groups and carbon chains, while in MCF7 monolayers penetration was limited to the surroundings of the polar groups. Even smaller insertion was observed for monolayers of the healthy cell extract. The photochemical reactions were modulated by AuSHINs penetration, since upon irradiation the surface area of A549 monolayer decreased owing to lipid chain cleavage by oxidative reactions. For MCF7 monolayers, hydroperoxidation under illumination led to a ca. 5% increase in surface area. The monolayers of healthy cell lipid extract were barely affected by irradiation, consistent with the lowest degree of AuSHINs insertion. In summary, efficient photothermal therapy may be devised by producing AuSHINs capable of penetrating the chain region of tumor cell membranes.
Collapse
Affiliation(s)
- Sabrina A Camacho
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil; IFSC, São Carlos Institute of Physics, University of São Paulo (USP), São Carlos, SP 13566-590, Brazil
| | - Mirella B Kobal
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil
| | - Lucas G Moreira
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil
| | - Maria J Bistaffa
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil
| | - Thamires C Roque
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil
| | - Wallance M Pazin
- IFSC, São Carlos Institute of Physics, University of São Paulo (USP), São Carlos, SP 13566-590, Brazil; São Paulo State University (UNESP), School of Technology and Applied Sciences, Presidente Prudente, SP 19060-900, Brazil
| | - Karina A Toledo
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil; São Paulo State University (UNESP), Institute of Biosciences, Letters and Exact Sciences, São José do Rio Preto 15054-000, Brazil
| | - Osvaldo N Oliveira
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil; IFSC, São Carlos Institute of Physics, University of São Paulo (USP), São Carlos, SP 13566-590, Brazil
| | - Pedro H B Aoki
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil.
| |
Collapse
|
6
|
Róg T, Girych M, Bunker A. Mechanistic Understanding from Molecular Dynamics in Pharmaceutical Research 2: Lipid Membrane in Drug Design. Pharmaceuticals (Basel) 2021; 14:1062. [PMID: 34681286 PMCID: PMC8537670 DOI: 10.3390/ph14101062] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
We review the use of molecular dynamics (MD) simulation as a drug design tool in the context of the role that the lipid membrane can play in drug action, i.e., the interaction between candidate drug molecules and lipid membranes. In the standard "lock and key" paradigm, only the interaction between the drug and a specific active site of a specific protein is considered; the environment in which the drug acts is, from a biophysical perspective, far more complex than this. The possible mechanisms though which a drug can be designed to tinker with physiological processes are significantly broader than merely fitting to a single active site of a single protein. In this paper, we focus on the role of the lipid membrane, arguably the most important element outside the proteins themselves, as a case study. We discuss work that has been carried out, using MD simulation, concerning the transfection of drugs through membranes that act as biological barriers in the path of the drugs, the behavior of drug molecules within membranes, how their collective behavior can affect the structure and properties of the membrane and, finally, the role lipid membranes, to which the vast majority of drug target proteins are associated, can play in mediating the interaction between drug and target protein. This review paper is the second in a two-part series covering MD simulation as a tool in pharmaceutical research; both are designed as pedagogical review papers aimed at both pharmaceutical scientists interested in exploring how the tool of MD simulation can be applied to their research and computational scientists interested in exploring the possibility of a pharmaceutical context for their research.
Collapse
Affiliation(s)
- Tomasz Róg
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Mykhailo Girych
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Alex Bunker
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
7
|
Molecular Dynamics Simulation of 2-Benzimidazolyl-Urea with DPPC Lipid Membrane and Comparison with a Copper(II) Complex Derivative. MEMBRANES 2021; 11:membranes11100743. [PMID: 34677508 PMCID: PMC8537910 DOI: 10.3390/membranes11100743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 11/17/2022]
Abstract
Benzimidazole derivatives have gained attention recently due to their wide pharmacological activity acting as anti-inflammatory, hypotensive, analgesic, and anti-aggregatory agents. They are also common ligands in transition metal coordination chemistry, forming complex compounds with enhanced biological properties, especially in targeted cancer therapy. A key issue to understand anti-tumour effects is drug permeability through cellular membranes, as poor permeability outcomes can avert further futile drug development. In this work, we conducted atomistic molecular dynamics (MD) simulations and biased MD simulations to explore the interactions of 2-benzimidazolyl-urea with a phospholipid bilayer (dipalmitoylphosphatidylcholine, DPPC) together with a previously synthesized copper(II) complex compound. The aim was to study the permeability of these compounds by assessing their free energy profile along the bilayer normal. The simulations indicated that both the ligand (2-benzimidazolyl-urea, BZIMU) and the complex show a similar behaviour, yielding high energy barriers for the permeation process. However, with increasing concentration of BZIMU, the molecules tend to aggregate and form a cluster, leading to the formation of a pore. Clustering and pore formation can possibly explain the previously observed cytotoxicity of the BZIMU molecule via membrane damage.
Collapse
|