1
|
Yan Y, Shen Y, Mahmoudi N, Li P, Tellam J, Campbell RA, Barlow DJ, Edkins K, Leach AG, Lawrence MJ. Dynamic self-assembled meso-structures formed across a wide concentration range in aqueous solutions of propranolol hydrochloride. J Colloid Interface Sci 2024; 683:1135-1149. [PMID: 39729808 DOI: 10.1016/j.jcis.2024.12.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/29/2024]
Abstract
HYPOTHESIS Nanoscale characterisation of the self-associated species formed by amphiphilic pharmaceuticals in aqueous solution carries relevance across their entire journey from development through to manufacture - relevant, therefore, not only as regards formulation of the drug products as medicines, but also potentially relevant to their bioavailability, activity, and clinical side effects. Such knowledge and understanding, however, can only be fully secured by applying a range of experimental and theoretical methodologies. EXPERIMENTS Herein, we apply a synergistic combination of solubility, surface tension, SANS, NMR and UV spectroscopic studies, together with MD simulation and QM calculations, to investigate the meso-structures of propranolol hydrochloride aggregates in bulk aqueous solutions, at concentrations spanning 2.5 mM to > 200 mM. In addition, we explore the effects of adding NaCl to mimic the ionic strength of physiological fluids, and the differences between racemate and single enantiomer. FINDINGS There is a continuum of particle sizes shown to exist across the entire concentration range, with molecules joining and leaving on the nanosecond timescale, and with the distributions of aggregate sizes varying with drug and salt concentration. Given that propranolol is a highly prescribed (WHO essential) medicine, disfavouring aggregators from consideration in high-throughput screening for potential new drug candidates - as many have advocated - should thus be done cautiously.
Collapse
Affiliation(s)
- Yixuan Yan
- School of Health Sciences, Stopford Building, The University of Manchester, Oxford Road, Manchester M13 9PT, UK.
| | - Yichun Shen
- School of Health Sciences, Stopford Building, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Najet Mahmoudi
- ISIS Pulsed Neutron and Muon Source, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX, UK
| | - Peixun Li
- Deuteration Facility, ISIS Pulsed Neutron and Muon Source, Rutherford Appleton Laboratory, STFC, Chilton, Didcot OX11 0QX, UK
| | - James Tellam
- Deuteration Facility, ISIS Pulsed Neutron and Muon Source, Rutherford Appleton Laboratory, STFC, Chilton, Didcot OX11 0QX, UK
| | - Richard A Campbell
- School of Health Sciences, Stopford Building, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - David J Barlow
- School of Health Sciences, Stopford Building, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Katharina Edkins
- School of Health Sciences, Stopford Building, The University of Manchester, Oxford Road, Manchester M13 9PT, UK; Institute of Pharmacy and Biomedical Sciences, Strathclyde University, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Andrew G Leach
- School of Health Sciences, Stopford Building, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - M Jayne Lawrence
- School of Health Sciences, Stopford Building, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
2
|
Golub M, Pieper J. Recent Progress in Solution Structure Studies of Photosynthetic Proteins Using Small-Angle Scattering Methods. Molecules 2023; 28:7414. [PMID: 37959833 PMCID: PMC10650700 DOI: 10.3390/molecules28217414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Utilized for gaining structural insights, small-angle neutron and X-ray scattering techniques (SANS and SAXS, respectively) enable an examination of biomolecules, including photosynthetic pigment-protein complexes, in solution at physiological temperatures. These methods can be seen as instrumental bridges between the high-resolution structural information achieved by crystallography or cryo-electron microscopy and functional explorations conducted in a solution state. The review starts with a comprehensive overview about the fundamental principles and applications of SANS and SAXS, with a particular focus on the recent advancements permitting to enhance the efficiency of these techniques in photosynthesis research. Among the recent developments discussed are: (i) the advent of novel modeling tools whereby a direct connection between SANS and SAXS data and high-resolution structures is created; (ii) the employment of selective deuteration, which is utilized to enhance spatial selectivity and contrast matching; (iii) the potential symbioses with molecular dynamics simulations; and (iv) the amalgamations with functional studies that are conducted to unearth structure-function relationships. Finally, reference is made to time-resolved SANS/SAXS experiments, which enable the monitoring of large-scale structural transformations of proteins in a real-time framework.
Collapse
Affiliation(s)
| | - Jörg Pieper
- Institute of Physics, University of Tartu, Wilhelm Ostwald Str. 1, 50411 Tartu, Estonia;
| |
Collapse
|
3
|
Arricca M, Salvadori A, Bonanno C, Serpelloni M. Modeling Receptor Motility along Advecting Lipid Membranes. MEMBRANES 2022; 12:membranes12070652. [PMID: 35877855 PMCID: PMC9317916 DOI: 10.3390/membranes12070652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 11/24/2022]
Abstract
This work aims to overview multiphysics mechanobiological computational models for receptor dynamics along advecting cell membranes. Continuum and statistical models of receptor motility are the two main modeling methodologies identified in reviewing the state of the art. Within the former modeling class, a further subdivision based on different biological purposes and processes of proteins’ motion is recognized; cell adhesion, cell contractility, endocytosis, and receptor relocations on advecting membranes are the most relevant biological processes identified in which receptor motility is pivotal. Numerical and/or experimental methods and approaches are highlighted in the exposure of the reviewed works provided by the literature, pertinent to the topic of the present manuscript. With a main focus on the continuum models of receptor motility, we discuss appropriate multiphyisics laws to model the mass flux of receptor proteins in the reproduction of receptor relocation and recruitment along cell membranes to describe receptor–ligand chemical interactions, and the cell’s structural response. The mass flux of receptor modeling is further supported by a discussion on the methodology utilized to evaluate the protein diffusion coefficient developed over the years.
Collapse
Affiliation(s)
- Matteo Arricca
- The Mechanobiology Research Center, University of Brescia (UNIBS), 25123 Brescia, Italy; (M.A.); (C.B.); (M.S.)
- Department of Mechanical and Industrial Engineering, Università degli Studi di Brescia, via Branze 38, 25123 Brescia, Italy
| | - Alberto Salvadori
- The Mechanobiology Research Center, University of Brescia (UNIBS), 25123 Brescia, Italy; (M.A.); (C.B.); (M.S.)
- Department of Mechanical and Industrial Engineering, Università degli Studi di Brescia, via Branze 38, 25123 Brescia, Italy
- Correspondence:
| | - Claudia Bonanno
- The Mechanobiology Research Center, University of Brescia (UNIBS), 25123 Brescia, Italy; (M.A.); (C.B.); (M.S.)
- Department of Civil, Environmental, Architectural Engineering and Mathematics, Università degli Studi di Brescia, via Branze 43, 25123 Brescia, Italy
| | - Mattia Serpelloni
- The Mechanobiology Research Center, University of Brescia (UNIBS), 25123 Brescia, Italy; (M.A.); (C.B.); (M.S.)
- Department of Mechanical and Industrial Engineering, Università degli Studi di Brescia, via Branze 38, 25123 Brescia, Italy
| |
Collapse
|
5
|
Reich V, Majumdar A, Müller M, Busch S. Comparison of molecular dynamics simulations of water with neutron and X-ray scattering experiments. EPJ WEB OF CONFERENCES 2022. [DOI: 10.1051/epjconf/202227201015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The atomistic structure and dynamics obtained from molecular dynamics (MD) simulations with the example of TIP3P (rigid and flexible) and TIP4P/2005 (rigid) water is compared to neutron and X-ray scattering data at ambient conditions. Neutron and X-ray diffractograms are calculated from the simulations for four isotopic substitutions as well as the incoherent intermediate scattering function for neutrons. The resulting curves are compared to each other and to published experimental data. Differences between simulated and measured intermediate scattering functions are quantified by fitting an analytic model to the computed values. The sensitivity of the scattering curves to the parameters of the MD simulations is demonstrated on the example of two parameters, bond length and angle.
Collapse
|
6
|
Plant Sterol Clustering Correlates with Membrane Microdomains as Revealed by Optical and Computational Microscopy. MEMBRANES 2021; 11:membranes11100747. [PMID: 34677513 PMCID: PMC8539253 DOI: 10.3390/membranes11100747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 11/26/2022]
Abstract
Local inhomogeneities in lipid composition play a crucial role in the regulation of signal transduction and membrane traffic. This is particularly the case for plant plasma membrane, which is enriched in specific lipids, such as free and conjugated forms of phytosterols and typical phytosphingolipids. Nevertheless, most evidence for microdomains in cells remains indirect, and the nature of membrane inhomogeneities has been difficult to characterize. We used a new push–pull pyrene probe and fluorescence lifetime imaging microscopy (FLIM) combined with all-atom multiscale molecular dynamics simulations to provide a detailed view on the interaction between phospholipids and phytosterol and the effect of modulating cellular phytosterols on membrane-associated microdomains and phase separation formation. Our understanding of the organization principles of biomembranes is limited mainly by the challenge to measure distributions and interactions of lipids and proteins within the complex environment of living cells. Comparing phospholipids/phytosterol compositions typical of liquid-disordered (Ld) and liquid-ordered (Lo) domains, we furthermore show that phytosterols play crucial roles in membrane homeostasis. The simulation work highlights how state-of-the-art modeling alleviates some of the prior concerns and how unrefuted discoveries can be made through a computational microscope. Altogether, our results support the role of phytosterols in the lateral structuring of the PM of plant cells and suggest that they are key compounds for the formation of plant PM microdomains and the lipid-ordered phase.
Collapse
|