1
|
Stiers M, Vercauteren J, Schepens T, Mergeay M, Janssen L, Hoogmartens O, Neyrinck A, Marinus BG, Sabbe M. Design of a flow modulation device to facilitate individualized ventilation in a shared ventilator setup. J Clin Monit Comput 2024; 38:679-690. [PMID: 38557919 PMCID: PMC11164813 DOI: 10.1007/s10877-024-01138-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/08/2024] [Indexed: 04/04/2024]
Abstract
This study aims to resolve the unmet need for ventilator surge capacity by developing a prototype device that can alter patient-specific flow in a shared ventilator setup. The device is designed to deliver a predictable tidal volume (VT), requiring minimal additional monitoring and workload. The prototyped device was tested in an in vitro bench setup for its performance against the intended use and design criteria. The ventilation parameters: VT and airway pressures, and ventilation profiles: pressure, flow and volume were measured for different ventilator and device settings for a healthy and ARDS simulated lung pathology. We obtained VTs with a linear correlation with valve openings from 10 to 100% across set inspiratory pressures (IPs) of 20 to 30 cmH2O. Airway pressure varied with valve opening and lung elastance but did not exceed set IPs. Performance was consistent in both healthy and ARDS-simulated lung conditions. The ventilation profile diverged from traditional pressure-controlled profiles. We present the design a flow modulator to titrate VTs in a shared ventilator setup. Application of the flow modulator resulted in a characteristic flow profile that differs from pressure- or volume controlled ventilation. The development of the flow modulator enables further validation of the Individualized Shared Ventilation (ISV) technology with individualization of delivered VTs and the development of a clinical protocol facilitating its clinical use during a ventilator surge capacity problem.
Collapse
Affiliation(s)
- Michiel Stiers
- Department of Public Health and Primary Care, Research unit Emergency Medicine, KU Leuven, 3000, Leuven, Belgium.
- Department of Emergency Medicine, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Jan Vercauteren
- Department of Mechanical Engineering, Royal Military Academy, Renaissancelaan 30, Brussels, Belgium
| | - Tom Schepens
- Department of Intensive Care Medicine, Ghent University Hospital, C Heymanslaan 10, Ghent, Belgium
| | - Matthias Mergeay
- Department of Anesthesiology and Critical Care Medicine, St-Dimpna, J.-B. Stessensstraat 2, 2440, Geel, Belgium
| | - Luc Janssen
- Department of Anesthesiology and Critical Care Medicine, St-Dimpna, J.-B. Stessensstraat 2, 2440, Geel, Belgium
| | - Olivier Hoogmartens
- Department of Public Health and Primary Care, Research unit Emergency Medicine, KU Leuven, 3000, Leuven, Belgium
- Department of Emergency Medicine, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Arne Neyrinck
- Department of Cardiovascular Sciences, Research unit Anesthesiology and Algology, KU Leuven, 3000, Leuven, Belgium
- Department of Anesthesiology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Benoît G Marinus
- Department of Mechanical Engineering, Royal Military Academy, Renaissancelaan 30, Brussels, Belgium
| | - Marc Sabbe
- Department of Public Health and Primary Care, Research unit Emergency Medicine, KU Leuven, 3000, Leuven, Belgium
- Department of Emergency Medicine, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| |
Collapse
|