1
|
Ceasovschih A, Șorodoc V, Covantsev S, Balta A, Uzokov J, Kaiser SE, Almaghraby A, Lionte C, Stătescu C, Sascău RA, Onofrei V, Haliga RE, Stoica A, Bologa C, Ailoaei Ș, Şener YZ, Kounis NG, Șorodoc L. Electrocardiogram Features in Non-Cardiac Diseases: From Mechanisms to Practical Aspects. J Multidiscip Healthc 2024; 17:1695-1719. [PMID: 38659633 PMCID: PMC11041971 DOI: 10.2147/jmdh.s445549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/10/2024] [Indexed: 04/26/2024] Open
Abstract
Despite the noteworthy advancements and the introduction of new technologies in diagnostic tools for cardiovascular disorders, the electrocardiogram (ECG) remains a reliable, easily accessible, and affordable tool to use. In addition to its crucial role in cardiac emergencies, ECG can be considered a very useful ancillary tool for the diagnosis of many non-cardiac diseases as well. In this narrative review, we aimed to explore the potential contributions of ECG for the diagnosis of non-cardiac diseases such as stroke, migraine, pancreatitis, Kounis syndrome, hypothermia, esophageal disorders, pulmonary embolism, pulmonary diseases, electrolyte disturbances, anemia, coronavirus disease 2019, different intoxications and pregnancy.
Collapse
Affiliation(s)
- Alexandr Ceasovschih
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- 2nd Internal Medicine Department, “Sf. Spiridon” Clinical Emergency Hospital, Iasi, Romania
| | - Victorița Șorodoc
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- 2nd Internal Medicine Department, “Sf. Spiridon” Clinical Emergency Hospital, Iasi, Romania
| | - Serghei Covantsev
- Department of Research and Clinical Development, Botkin Hospital, Moscow, Russia
| | - Anastasia Balta
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- 2nd Internal Medicine Department, “Sf. Spiridon” Clinical Emergency Hospital, Iasi, Romania
| | - Jamol Uzokov
- Department of Cardiology, Republican Specialized Scientific Practical Medical Center of Therapy and Medical Rehabilitation, Tashkent, Uzbekistan
| | - Sergio E Kaiser
- Discipline of Clinical and Experimental Pathophysiology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Abdallah Almaghraby
- Department of Cardiology, Ibrahim Bin Hamad Obaidallah Hospital, Ras Al Khaimah, United Arab Emirates
| | - Cătălina Lionte
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- 2nd Internal Medicine Department, “Sf. Spiridon” Clinical Emergency Hospital, Iasi, Romania
| | - Cristian Stătescu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- Department of Cardiology, “Prof. Dr. George I.M. Georgescu” Cardiovascular Diseases Institute, Iasi, Romania
| | - Radu A Sascău
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- Department of Cardiology, “Prof. Dr. George I.M. Georgescu” Cardiovascular Diseases Institute, Iasi, Romania
| | - Viviana Onofrei
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- Department of Cardiology, “Sf. Spiridon” Clinical Emergency Hospital, Iasi, Romania
| | - Raluca Ecaterina Haliga
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- 2nd Internal Medicine Department, “Sf. Spiridon” Clinical Emergency Hospital, Iasi, Romania
| | - Alexandra Stoica
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- 2nd Internal Medicine Department, “Sf. Spiridon” Clinical Emergency Hospital, Iasi, Romania
| | - Cristina Bologa
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- 2nd Internal Medicine Department, “Sf. Spiridon” Clinical Emergency Hospital, Iasi, Romania
| | - Ștefan Ailoaei
- Department of Cardiology, “Prof. Dr. George I.M. Georgescu” Cardiovascular Diseases Institute, Iasi, Romania
| | - Yusuf Ziya Şener
- Department of Internal Medicine, Hacettepe University Faculty of Medicine, Ankara, Turkiye
| | - Nicholas G Kounis
- Department of Internal Medicine, Division of Cardiology, University of Patras Medical School, Patras, Greece
| | - Laurențiu Șorodoc
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- 2nd Internal Medicine Department, “Sf. Spiridon” Clinical Emergency Hospital, Iasi, Romania
| |
Collapse
|
2
|
Xu Q, Guo X, Wang S, Feng Q, Yan S, Yan Y. Combination of click chemistry and Schiff base reaction: Post-synthesis of covalent organic frameworks as an immobilized metal ion affinity chromatography platform for efficient capture of global phosphopeptides in serum with chronic obstructive pulmonary disease. J Sep Sci 2024; 47:e2300900. [PMID: 38356233 DOI: 10.1002/jssc.202300900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/03/2024] [Accepted: 01/15/2024] [Indexed: 02/16/2024]
Abstract
Reasonable design and construction of functionalized materials are of great importance for the enrichment of global phosphopeptides. In this work, Ti4+ functionalized hydrophilic covalent organic frameworks by introducing glutathione (GSH) and 2,3,4-trihydroxy benzaldehyde (THBA) via click chemistry and Schiff base reaction (COF-V@GSH-THBA-Ti4+ ) was constructed and applied for selective enrichment of phosphopeptides in serum. Benefit from the high surface area, excellent hydrophilicity as well as regular mesoporous structure, COF-V@GSH-THBA-Ti4+ displayed high selectivity (molar ratio of 2000:1), low limit of detection (0.5 fmol), high load capacity (100.0 mg/g) and excellent size-exclusion effect (1:10000) for enrichment of phosphopeptides. For actual bio-sample analysis, 15 phosphopeptides assigned to 10 phosphoproteins with 16 phosphorylated sites and 33 phosphopeptides assigned to 25 phosphoproteins with 34 phosphorylated sites were detected from the serum of patients with chronic obstructive pulmonary disease (COPD), and normal controls. Biological processes and molecular functions analysis further disclosed the difference of serums with phosphoproteomics between COPD and normal controls.
Collapse
Affiliation(s)
- Qian Xu
- Tongji University School of Medicine, Shanghai, China
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Xiaoli Guo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Simeng Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Quanshou Feng
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, China
| | - Shi Yan
- Tongji University School of Medicine, Shanghai, China
| | - Yinghua Yan
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
3
|
Kotlyarov S, Kotlyarova A. Clinical Significance of Lipid Transport Function of ABC Transporters in the Innate Immune System. MEMBRANES 2022; 12:1083. [PMID: 36363640 PMCID: PMC9698216 DOI: 10.3390/membranes12111083] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
ABC transporters are a large family of proteins that transport a variety of substrates across cell plasma membranes. Because of this, they are involved in many physiological processes. It is of interest to note that many ABC transporters are involved in the transport of various lipids. In addition, this function may be related to the innate immune system. The evidence that ABC transporters are involved in the regulation of the innate immune system through the transport of various substances greatly enhances the understanding of their clinical significance. ABC transporters are involved in the cellular homeostasis of cholesterol as well as in the regulation of its content in lipid rafts. Through these mechanisms, they can regulate the function of membrane proteins, including receptors of the innate immune system. By regulating lipid transport, some members of ABC transporters are involved in phagocytosis. In addition, ABC transporters are involved in the transport of lipopolysaccharide, lipid mediators of inflammation, and perform other functions in the innate immune system.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacy Management and Economics, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
5
|
Kotlyarov S. High-Density Lipoproteins: A Role in Inflammation in COPD. Int J Mol Sci 2022; 23:8128. [PMID: 35897703 PMCID: PMC9331387 DOI: 10.3390/ijms23158128] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a widespread disease associated with high rates of disability and mortality. COPD is characterized by chronic inflammation in the bronchi as well as systemic inflammation, which contributes significantly to the clinically heterogeneous course of the disease. Lipid metabolism disorders are common in COPD, being a part of its pathogenesis. High-density lipoproteins (HDLs) are not only involved in lipid metabolism, but are also part of the organism's immune and antioxidant defense. In addition, HDL is a versatile transport system for endogenous regulatory agents and is also involved in the removal of exogenous substances such as lipopolysaccharide. These functions, as well as information about lipoprotein metabolism disorders in COPD, allow a broader assessment of their role in the pathogenesis of heterogeneous and comorbid course of the disease.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
6
|
Kotlyarov S, Kotlyarova A. Anti-Inflammatory Function of Fatty Acids and Involvement of Their Metabolites in the Resolution of Inflammation in Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2021; 22:ijms222312803. [PMID: 34884621 PMCID: PMC8657960 DOI: 10.3390/ijms222312803] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 12/13/2022] Open
Abstract
Lipid metabolism plays an important role in many lung functions. Disorders of lipid metabolism are part of the pathogenesis of chronic obstructive pulmonary disease (COPD). Lipids are involved in numerous cross-linkages with inflammation. Recent studies strongly support the involvement of fatty acids as participants in inflammation. They are involved in the initiation and resolution of inflammation, including acting as a substrate for the formation of lipid mediators of inflammation resolution. Specialized pro-inflammatory mediators (SPMs) belonging to the classes of lipoxins, resolvins, maresins, and protectins, which are formed enzymatically from unsaturated fatty acids, are now described. Disorders of their production and function are part of the pathogenesis of COPD. SPMs are currently the subject of active research in order to find new drugs. Short-chain fatty acids are another important participant in metabolic and immune processes, and their role in the pathogenesis of COPD is of great clinical interest.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
- Correspondence:
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|