1
|
Baig U, Waheed A, Jillani SMS. Recent Advancements in Metal-Organic Framework-Based Membranes for Hydrogen Separation: A Review. Chem Asian J 2024; 19:e202300619. [PMID: 37818783 DOI: 10.1002/asia.202300619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
Metal-organic frameworks (MOFs) are promising porous materials that have huge potential for gas separation when put in the membrane configuration. MOFs have huge potential due to certain salient features of the MOFs such as excellent pore size, ease of tuning the pore chemistry, higher surface area, and chemical and thermal stabilities. MOFs have been explored for various gas separation and storage applications. This review discusses various approaches for fabricating MOFs-based membranes for the separation of H2 gas from a variety of feeds having various gases CO2, CO, N2, and CH4 as impurities. The emphasis has been put on three types of membranes for H2 separation which include MOFs-based hollow fibrous/tubular/disk membranes, MOFs-based mixed matrix membranes (MMMs), and MOFs-based stand-alone membranes. In addition, various challenges such as reducing inhomogeneity between MOFs and polymeric matrices have also been discussed. Similarly, the approaches to successfully decorating MOFs on different supports in different configurations have been explained. The possible ways of improving the MOFs-based membranes for H2 have also been discussed.
Collapse
Affiliation(s)
- Umair Baig
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Abdul Waheed
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Shehzada Muhammad Sajid Jillani
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
2
|
Okur S, Hashem T, Bogdanova E, Hodapp P, Heinke L, Bräse S, Wöll C. Optimized Detection of Volatile Organic Compounds Utilizing Durable and Selective Arrays of Tailored UiO-66-X SURMOF Sensors. ACS Sens 2024; 9:622-630. [PMID: 38320750 PMCID: PMC10898453 DOI: 10.1021/acssensors.3c01575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 02/24/2024]
Abstract
Metal-organic frameworks (MOFs), with their well-defined and highly flexible nanoporous architectures, provide a material platform ideal for fabricating sensors. We demonstrate that the efficacy and specificity of detecting and differentiating volatile organic compounds (VOCs) can be significantly enhanced using a range of slightly varied MOFs. These variations are obtained via postsynthetic modification (PSM) of a primary framework. We alter the original MOF's guest adsorption affinities by incorporating functional groups into the MOF linkers, which yields subtle changes in responses. These responses are subsequently evaluated by using machine learning (ML) techniques. Under severe conditions, such as high humidity and acidic environments, sensor stability and lifespan are of utmost importance. The UiO-66-X MOFs demonstrate the necessary durability in acidic, neutral, and basic environments with pH values ranging from 2 to 11, thus surpassing most other similar materials. The UiO-66-NH2 thin films were deposited on quartz-crystal microbalance (QCM) sensors in a high-temperature QCM liquid cell using a layer-by-layer pump method. Three different, highly stable surface-anchored MOFs (SURMOFs) of UiO-66-X obtained via the PSM approach (X: NH2, Cl, and N3) were employed to fabricate arrays suitable for electronic nose applications. These fabricated sensors were tested for their capability to distinguish between eight VOCs. Data from the sensor array were processed using three distinct ML techniques: linear discriminant (LDA), nearest neighbor (k-NN), and neural network analysis methods. The discrimination accuracies achieved were nearly 100% at high concentrations and over 95% at lower concentrations (50-100 ppm).
Collapse
Affiliation(s)
- Salih Okur
- Karlsruhe
Institute of Technology (KIT), Institute of Functional Interfaces, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Tawheed Hashem
- Karlsruhe
Institute of Technology (KIT), Institute of Functional Interfaces, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Evgenia Bogdanova
- Karlsruhe
Institute of Technology (KIT), Institute of Functional Interfaces, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Patrick Hodapp
- Karlsruhe
Institute of Technology (KIT), Institute for Biological Interfaces
3–Soft Matter Synthesis Laboratory (IBG3–SML), Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Lars Heinke
- Karlsruhe
Institute of Technology (KIT), Institute of Functional Interfaces, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Stefan Bräse
- Karlsruhe
Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Kaiserstrasse 12,, 76131 Karlsruhe, Germany
- Karlsruhe
Institute of Technology (KIT), Institute of Biological and Chemical
Systems–Functional Molecular Systems (IBCS–FMS), Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Christof Wöll
- Karlsruhe
Institute of Technology (KIT), Institute of Functional Interfaces, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
3
|
Shrivastav V, Mansi, Gupta B, Dubey P, Deep A, Nogala W, Shrivastav V, Sundriyal S. Recent advances on surface mounted metal-organic frameworks for energy storage and conversion applications: Trends, challenges, and opportunities. Adv Colloid Interface Sci 2023; 318:102967. [PMID: 37523999 DOI: 10.1016/j.cis.2023.102967] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/30/2023] [Accepted: 07/21/2023] [Indexed: 08/02/2023]
Abstract
Establishing green and reliable energy resources is very important to counteract the carbon footprints and negative impact of non-renewable energy resources. Metal-organic frameworks (MOFs) are a class of porous material finding numerous applications due to their exceptional qualities, such as high surface area, low density, superior structural flexibility, and stability. Recently, increased attention has been paid to surface mounted MOFs (SURMOFs), which is nothing but thin film of MOF, as a new category in nanotechnology having unique properties compared to bulk MOFs. With the advancement of material growth and synthesis technologies, the fine tunability of film thickness, consistency, size, and geometry with a wide range of MOF complexes is possible. In this review, we recapitulate various synthesis approaches of SURMOFs including epitaxial synthesis approach, direct solvothermal method, Langmuir-Blodgett LBL deposition, Inkjet printing technique and others and then correlated the synthesis-structure-property relationship in terms of energy storage and conversion applications. Further the critical assessment and current problems of SURMOFs have been briefly discussed to explore the future opportunities in SURMOFs for energy storage and conversion applications.
Collapse
Affiliation(s)
| | - Mansi
- CSIR-Central Scientific Instrument Organisation (CSIR-CSIO), Chandigarh 160030, India
| | - Bhavana Gupta
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Prashant Dubey
- Advanced Carbon Products and Metrology Department, CSIR-National Physical Laboratory (CSIR-NPL), New Delhi 110012, India
| | - Akash Deep
- Institute of Nano Science and Technology, Sector-81, Mohali 140306, Punjab, India
| | - Wojciech Nogala
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Vishal Shrivastav
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Shashank Sundriyal
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; Regional Center of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic,.
| |
Collapse
|
4
|
Zhang C, Shao Y, Shen W, Li H, Nan Z, Dong M, Bian J, Cao X. Key Technologies of Pure Hydrogen and Hydrogen-Mixed Natural Gas Pipeline Transportation. ACS OMEGA 2023; 8:19212-19222. [PMID: 37305288 PMCID: PMC10249026 DOI: 10.1021/acsomega.3c01131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/05/2023] [Indexed: 06/13/2023]
Abstract
Thanks to the advantages of cleanliness, high efficiency, extensive sources, and renewable energy, hydrogen energy has gradually become the focus of energy development in the world's major economies. At present, the natural gas transportation pipeline network is relatively complete, while hydrogen transportation technology faces many challenges, such as the lack of technical specifications, high safety risks, and high investment costs, which are the key factors that hinder the development of hydrogen pipeline transportation. This paper provides a comprehensive overview and summary of the current status and development prospects of pure hydrogen and hydrogen-mixed natural gas pipeline transportation. Analysts believe that basic studies and case studies for hydrogen infrastructure transformation and system optimization have received extensive attention, and related technical studies are mainly focused on pipeline transportation processes, pipe evaluation, and safe operation guarantees. There are still technical challenges in hydrogen-mixed natural gas pipelines in terms of the doping ratio and hydrogen separation and purification. To promote the industrial application of hydrogen energy, it is necessary to develop more efficient, low-cost, and low-energy-consumption hydrogen storage materials.
Collapse
Affiliation(s)
- Chaoyang Zhang
- China
Petroleum Engineering & Construction Corporation North China Company, Renqiu 061000, People’s Republic of China
| | - Yanbo Shao
- China
Petroleum Engineering & Construction Corporation North China Company, Renqiu 061000, People’s Republic of China
- College
of Pipeline and Civil Engineering, China
University of Petroleum (East China), Qingdao 266580, People’s Republic of China
| | - Wenpeng Shen
- China
Petroleum Engineering & Construction Corporation North China Company, Renqiu 061000, People’s Republic of China
| | - Hao Li
- College
of Pipeline and Civil Engineering, China
University of Petroleum (East China), Qingdao 266580, People’s Republic of China
| | - Zilong Nan
- PipeChina
Engineering Technology Innovation Co., Ltd., Tianjin 300450, People’s Republic of China
| | - Meiqin Dong
- College
of Pipeline and Civil Engineering, China
University of Petroleum (East China), Qingdao 266580, People’s Republic of China
| | - Jiang Bian
- College
of Pipeline and Civil Engineering, China
University of Petroleum (East China), Qingdao 266580, People’s Republic of China
| | - Xuewen Cao
- College
of Pipeline and Civil Engineering, China
University of Petroleum (East China), Qingdao 266580, People’s Republic of China
| |
Collapse
|
5
|
Xu X, Hartanto Y, Zheng J, Luis P. Recent Advances in Continuous MOF Membranes for Gas Separation and Pervaporation. MEMBRANES 2022; 12:1205. [PMID: 36557112 PMCID: PMC9785445 DOI: 10.3390/membranes12121205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Metal-organic frameworks (MOFs), a sub-group of porous crystalline materials, have been receiving increasing attention for gas separation and pervaporation because of their high thermal and chemical stability, narrow window sizes, as well as tuneable structural, physical, and chemical properties. In this review, we comprehensively discuss developments in the formation of continuous MOF membranes for gas separation and pervaporation. Additionally, the application performance of continuous MOF membranes in gas separation and pervaporation are analysed. Lastly, some perspectives for the future application of continuous MOF membranes for gas separation and pervaporation are given.
Collapse
Affiliation(s)
- Xiao Xu
- Materials and Process Engineering (iMMC-IMAP), UCLouvain, Place Sainte Barbe 2, 1348 Louvain-la-Neuve, Belgium
- Research and Innovation Centre for Process Engineering (ReCIPE), Place Sainte Barbe 2, bte L5.02.02, 1348 Louvain-la-Neuve, Belgium
| | - Yusak Hartanto
- Materials and Process Engineering (iMMC-IMAP), UCLouvain, Place Sainte Barbe 2, 1348 Louvain-la-Neuve, Belgium
- Research and Innovation Centre for Process Engineering (ReCIPE), Place Sainte Barbe 2, bte L5.02.02, 1348 Louvain-la-Neuve, Belgium
| | - Jie Zheng
- School of Chemistry and Chemical Engineering, Chongqing University, No. 55 Daxuecheng South Rd., Shapingba, Chongqing 401331, China
| | - Patricia Luis
- Materials and Process Engineering (iMMC-IMAP), UCLouvain, Place Sainte Barbe 2, 1348 Louvain-la-Neuve, Belgium
- Research and Innovation Centre for Process Engineering (ReCIPE), Place Sainte Barbe 2, bte L5.02.02, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|